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Shearing wet granular systems causes a re-distribution of the interstitial liquid, which can affect
the material’s bulk behavior. Using the Discrete Element Method (DEM), we study the early
rapid transients, the intermediate states and the slow long-term evolution of liquid re-distribution
for various material parameters and different initial wetting conditions in an inhomogeneous split-
bottom ring-shear cell featuring a wide shear-band away from the system walls. In our model,
liquid exists in two states, either in liquid bridges between particles or in liquid films on the particle
surfaces. Under deformations like shear, the liquid is re-distributed due to the rupture of existing
and formation of new liquid bridges. As new model parameter, a liquid bridge limit-volume is
imposed to avoid extensive clustering of liquid.

Studying the effect of the local shear rate on the liquid re-distribution, two distinct effects are
observed: for small amounts of shear, i.e. small strain amplitude, the interstitial liquid is randomly
re-distributed locally. For larger amounts of shear, liquid is transported away from the shear zone.
The local re-distribution quickly results in a characteristic probability distribution of liquid bridge
volumes, independent of the initial wetting conditions, while the mean liquid bridge volume depends
on the limit-volume. Although the shear-driven diffusion-like liquid transport is active from the
beginning, it dominates the transport on the long term, when the liquid moves out of the shear
band, making the shear band dry. Ongoing theoretical analysis suggest a competition of drift and
diffusive mechanisms in a different set of coordinates that can explain all our observations by defining
a local Peclet number that quantifies the relative strength of the two transport mechanisms.

I. INTRODUCTION

The microstructure of confined granular media is typi-
cally inhomogeneous, anisotropic and disordered [1, 2].
Under external loading, these systems exhibit a non-
equilibrium jamming transition from a solid-like to a
liquid-like state [3–5] when the applied shear stress or
energy exceeds the shear resistance or inter-particle en-
ergy, and materials start to flow. The microstructure
is disturbed and re-arranged completely during this pro-
cess. Thus, the internal structure of the granular medium
changes continuously when subjected to shear. This in-
ternal structure is influenced by polydispersity, related
structural features and frictional properties of the granu-
lar particles, which thus play a crucial role in determining
their flow dynamics [6–11]. For example, shear tests of
both drained and undrained sand show a state transfor-
mation, depending on the initial packing density, before
it reaches a critical state [12–14]. This state transfor-
mation corresponds to a local maximum in the evolution
of the coordination number. In a typical consolidated-
drained condition, the pore water can drain out of the soil
easily, causing volumetric strains in the soil and reaching
the same critical state irrespective of the initial configu-
ration.
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Wet granular media are collections of grains contain-
ing unsaturated interstitial fluid, with athermal inter-
actions through cohesive capillary, repulsive elastic and
dissipative contact forces. These capillary interactions
are dependent on intrinsic properties of the contact force
model, namely, the maximum capillary force and the
maximum interaction distance [15]. External forces lead
to granular flow if the applied shear stress exceeds the
yield stress, eventually leading to a lower critical state
shear stress after finite shear strain [16–18]. A simple
constitutive relation for the critical-state shear stress is
constituted by the bulk cohesion and the macro friction
coefficient [15, 19, 20]. The bulk cohesion is correlated
with the Bond number or adhesion index, measured as
the squared ratio of stress to wetting time scales [15, 21].
This bulk cohesion was analysed in terms of the force and
fabric anisotropies [21] for wet granular materials. In our
previous studies, a generalized rheology shows that the
steady-state shear stress is factorized into a product of
functions of different dimensionless numbers [18, 22], if
a simplistic situation is assumed where all contacts have
an equal liquid bridge volume. The liquid in the system
is then not treated as a separate entity, rather the con-
tact model takes into account the effect of liquid capillary
bridges.

Recent results by Mani et al. [23–25] show from ex-
periments and simulations that the liquid content de-
creases within wet shear bands. This is a diffusion-driven
phenomenon occurring at larger amount of shear, which
causes the liquid to be transported away from the shear
band. However, much remains unexplored on the ini-
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tial re-distribution of the liquid, which happens within
a smaller shear strain scale and is the major focus of
our discussion. Within small shear strain, the liquid vol-
ume is conserved within the shear band, while the liquid
is locally re-distributed. This prompts us to look for a
liquid migration model in our DEM simulations where
liquid moves between contacts due to shear-driven liquid
bridge formation and rupture. Note, that liquid trans-
port fluxes are also driven by Laplace pressure changes
[24, 26–28], either through the vapor phase or through
the wetting layers on the beads [29]. However, this mode
of liquid transport is excluded from the discussion in this
paper.

Understanding the role of shear on the re-distribution
of liquid in wet granular materials is of considerable tech-
nological importance for applications in many fields, such
as civil engineering, pharmaceutical research, agronomy,
etc., especially in process equipments subjected to in-
homogeneous shear. One important application is the
flow in industrial mixers and granulators. Note, that
the initial liquid distribution can vary significantly: ini-
tial homogeneous liquid bridge volume in all contacts is
observed if the initial wet sample is prepared by allow-
ing equilibration by suction before shear. Conversely,
another extreme situation is observed if all liquids are
present in form of liquid films and the initial sample is
given minimum equilibration time before shear [23]. We
study here the transients of liquid re-distribution upon
shear, considering these two extremes of initial condi-
tions. The question that comes to our mind is whether
the liquid distribution reaches a steady or critical state
which is independent of the initial configuration. In order
to check this, we are investigating here the transient of
liquid re-distribution for wet granular media, after both
small and large shear strains.

The paper is organized as follows: Section II describes
the geometry of the system, details of the contact force
models, the liquid migration model, and the different ini-
tial conditions for our simulations. Section III presents
the methodology for the micro-macro transition in the
transient states and for locating the shear band in the
system. Sections IV A and IV B describe our results giv-
ing an illustration of the small shear transients of liquid
re-distribution from different initial conditions towards
an intermediate pseudo-critical state of liquid distribu-
tion. Furthermore, we describe the effect of the different
parameters, e.g., the width of the shear band, saturation,
and the maximal liquid bridge volume on the transient
evolution and the intermediate pseudo-critical state in
Sections IV C, IV D and IV E, respectively. Finally, Sec-
tion IV F gives an overview of the state beyond the liquid
re-distribution transient when the liquid migrates out of
the shear band by a shear rate dependent diffusive pro-
cess on very large shears. We draw our conclusions in
Section V.

II. SYSTEM

A. Geometry

The set-up used for simulations consists of a shear cell
with annular geometry and a split in the bottom plate,
as explained in [15, 17, 18, 22, 30–34]. The system con-
sists of an outer cylinder (radius Ro = 110 mm) rotating
around a fixed inner cylinder (radius Ri = 14.7 mm)
with a rotation frequency of Ω = 0.19 s−1. Note, that
we use a relatively fast rotation to save our computa-
tional time. However, this is well below the dynamic
flow limit. The granular material is confined by grav-
ity between the two concentric cylinders and the bottom
plate, with a free top surface. The bottom plate is split
at radius Rs = 85 mm into a moving outer part and a
static inner part. Due to the split at the bottom, a shear
band is formed at the bottom at Rs. It moves inwards
and widens with increasing height, due to the geometry.
This set-up features a wide shear band away from the
wall, free from boundary effects, if an intermediate filling
height (H ≈ 40 mm) is chosen. The focus of our study
here is the liquid re-distribution inside the system and
the shear band in particular. While earlier simulations
were done with a anglular section of 90◦ [16, 32–34] or
30◦ [15, 18, 22], very few simulations are done using the
whole shear cell [35, 36].

B. DEM Model

Our approach towards a microscopic understanding of
macroscopic particulate material behavior is the mod-
eling of particles using the so-called Discrete Element
Method (DEM). We use the open source code Mercury-
DPM [37, 38] and in the following subsections, describe
the particles and the contact model for our DEM simu-
lations.

1. Particles

The annular space in the split bottom geometry men-
tioned above is filled with N = 133892 polydispersed
spherical glass beads with density ρp = 2000 kg m−3 up
to height H ≈ 40 mm. The mean particle diameter is
rp = 〈r〉 = 1.1 mm and a homogeneous size distribution

with rmin/rmax = 1/2 and width 1 − 〈r〉2/〈r2〉 ≈ 0.04 is
chosen.

2. Contact model for wet particles

We use a phenomenological contact model combining
a linear visco-elastic repulsive force and a hysteretic non-
linear liquid bridge capillary force proposed by Willet
et al. [39] based on the particle specifications, contact
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TABLE I. Parameters

Description Quantity

Surface Tension (σ) 0.01 Nm−1

Elastic stiffness (k) 120 Nm−1

Contact angle (θ) 20◦

Sliding friction coefficient (µp) 0.01
Viscous damping coefficient (γo) 5× 10−3 kgs−1

properties, liquid properties and liquid saturation in the
system [15]. The normal contact force between particles
i and j is characterized by the linear elastic-repulsive
and dissipative forces given by f i,jn = kδ − γoδ̇ and the
adhesive capillary force f ijc between particles i and j is
given as:

f ijc =
fc

max reff
rp

1 + 1.05S̄ + 2.5S̄2
, (1)

where the separation distance is normalised as S̄ =
S
√

(rp/Vb), S = max(0, |~ri − ~rj | − (ri + rj)) being the
separation distance between two particles i and j, where
~ri and ~rj are the position vectors of the two particles
respectively. The maximum capillary force between the
particles when they are in contact (S = 0) is given by
fc

max = 2πrpσcos θ. The effective radius reff of the two
interacting spherical particles can be estimated as the
harmonic mean of the two particle radii ri and rj ac-
cording to the Derjaguin approximation [40], yielding the
effective radius:

reff =
2rirj
ri + rj

. (2)

The adhesive force of the contact model is determined
by three parameters: surface tension σ, contact angle
θ of the liquid (both of which determine the maximum
adhesive force) and the liquid bridge volume Vb (which
determines how the force depends on the separation dis-
tance) [15]. The fixed parameters of the contact model
are given in Table I. Bridges form when particles come
into contact, and rupture when the separation distance
exceeds Sc. As proposed by Lian et al. [41], the critical
separation distance Sc at which the bridge ruptures is
given by:

Sc =

(
1 +

θ

2

)
Vb

1/3 (3)

C. Liquid migration model

In our present study, we extend this model to account
for liquid migration [15, 18, 22]. The methodology is
quite straightforward as proposed by Mani et al. [23, 25]:
liquid is transferred locally whenever contacts are formed
or broken. The particles and the liquid are considered

two different entities in the system. Liquid is either as-
sociated with a particle as a thin liquid film of volume
V i
f , or with a contact as a liquid bridge of volume V ij

b .
We describe the liquid migration model in the following
sub-sections.

1. Liquid bridge formation

When two particles come into contact (i.e. overlap), a
new liquid bridge is formed from the liquid contained in
the particle films. Since there can be some liquid volume
Vmin trapped in the roughness of the grains [28, 42], to
contribute, V i

f must be larger or equal to Vmin. There-

fore, the available liquid for bridge formation is V i
f−Vmin.

Since, Vmin is fixed and trapped in the particles, without
loss of generality, we assume Vmin = 0 for our simula-
tions. The volume V ij

b transferred to the liquid bridge is
therefore:

V ij
b = min(V i

f + V j
f , Vmax), (4)

where Vmax = βrp
3 is the maximal liquid bridge volume,

imposed in our simulations as an additional parameter
to avoid unbounded clustering of liquid by coalescence.
This model is designed for small liquid content and large
contact angle with fast and easy transport of fluid on
the surface. Figure 1 shows a schematic figure of liquid
bridge formation.

The excess volume, V i
f +V j

f −V
ij
b remains as film vol-

ume in the interacting particles, in proportion to the ex-
isting volume per particle. The appropriate value for
Vmax can be estimated by different arguments. An upper
bound for β is due to the maximal pore-space available,
which implies for random close packing of monodisperse
spheres that β ≈ 0.33, if all pore space would be filled
by liquid. However, we rather assume poor saturation
and localisation of liquid at the contacts, and thus con-
sider, following the arguments from [42], that β = 0.058.
Thus, liquid bridges remain in the pendular limit, filling
less than 20% of the pore space [43]. Beyond the pendu-
lar regime, a considerably more complex expression for
the liquid bridge force is given for greater volumes and
contact angles [39], however, the difference to our simple
expression is below 20% even for much larger β, so that
we refrain from using a too complex expression and stick
to Eq.1. The local adhesive force, as quantified by the
Bond number Bo, does not change with liquid volume for
either capillary force model, and only few liquid bridges
are assumed to grow really large. Nevertheless, we ex-
plore below the effect of the maximum volume Vmax on
the liquid re-distribution, using different β in the range:

β ∈ [0.03, 0.08, 0.15, 0.23, 0.45, 0.60]. (5)
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FIG. 1. Liquid bridge formation (V 12
b < Vmax).

2. Liquid bridge rupture

When the distance between two particles i and j with
a liquid bridge in between exceeds the rupture distance
of the liquid bridge, the liquid bridge ruptures and the
bridge volume is distributed to the neighboring contacts:

V mn,new
b = min(V mn,old

b + V ij
b /(2Nm

c ), V max), (6)

where n denotes the particles in contact with one of the
two particles m ∈ i, j and Nm

c is the number of neigh-
boring contacts associated with the particle m. Figure
2 shows a schematic representation of liquid bridge rup-
ture. If the maximum volume Vmax is reached, the re-
maining liquid is added to the film volumes V i

f and V j
f .

Thus, total liquid volume conservation is ensured.
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FIG. 2. Liquid bridge rupture (V ij,new
b < Vmax where i ∈ 1, 2

and j ∈ 3, 4, 5).

D. Initial conditions

We begin our simulations with a no-shear preparation
history, where we allow particles to fall freely into the

system under gravity. At this stage, particles are dry
without any liquid on them. After free falling, the parti-
cles are allowed to relax until they reach a ratio of kinetic
to potential energy below 10−3. After relaxation, the ki-
netic energy of the system becomes negligible while there
is a finite elastic potential energy, which contributes to
the total energy of the sample. After the complete prepa-
ration and relaxation of the sample, we add liquids to the
system and start shearing. The potential energy of the
sample is increasing after addition of the liquid, depend-
ing on the saturation, while the kinetic energy remains
small at the commencement of shear.

Liquid addition means that each particle is assigned
with an initial liquid film volume V 0

f . If not specified

otherwise, we have V 0
f = 50 nl in our system for stan-

dard simulations discussed in this paper. On shearing,
the kinetic energy increases and the elastic potential en-
ergy changes slowly until they reach a steady state with
Ek/Ep ≈ 10−6. In order to understand how liquid re-
distributes, we simulate the two extreme cases of ini-
tial liquid distribution: (i) 100% liquid distribution in
the form of liquid films (initial condition A) and (ii)
100% liquid distribution in the form of liquid bridges
(initial condition B). Initial condition A is initialized
by distributing the total mount of liquid volume uni-
formly among all the particles as liquid film at the start
of the simulation. This amounts to V 0

f = 50 nl liquid
film volume per particle. However, few liquid bridges
are already formed in the detected contacts at the on-
set of shear. Initial condition B is done by distributing
the same amount of liquid volume as in initial condition
A, uniformly among all the existing contacts as liquid
bridges. The contacts here include both the physical con-
tacts and the possible long distance interactions between
particles that are within the range of rupture distance of
the liquid bridge. It is obvious that when the wet sample
is allowed with long equilibration time, even distant sur-
faces could be filled in with liquid bridges due to suction
pressure gradient. Thus, it is a logical assumption to dis-
tribute the liquid into not only the mechanical contacts,
but also the long range “contacts” within the range of
rupture distance.

Granular materials with interstitial liquid can be clas-
sified as dry bulk, adsorption layers, pendular state, fu-
nicular state, capillary state, or suspension, depending
on the level of saturation [44, 45]. In our present work,
we intend to study the phenomenology of liquid bridge
re-distribution between particles in the pendular state,
where well-separated liquid bridges exist individually,
without geometrical overlap. In order to study the in-
fluence of liquid content on the liquid re-distribution, we
vary the initial liquid film volume V 0

f on the particles
given as :

V 0
f ∈ [10, 20, 40, 50, 80, 100] nl (7)

corresponding to saturation [43]:

S ∈ [0.28, 0.57, 1.14, 1.42, 2.27, 2.84] % (8)
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corresponding to a measured average porosity of 0.35.
While varying V 0

f , we keep the maximal liquid bridge

volume constant with Vmax = 40 nl (β = 0.03). While
varying β according to Eq. 5, we keep the initial liquid
film volume constant with V 0

f = 50 nl. As a standard
simulation in this paper, we keep the initial liquid film
volume V 0

f = 50 nl and the maximal liquid bridge volume
constant with β = 0.03, if not specified otherwise. The
bulk saturation is 1.14% for this standard case, with a
bulk porosity of ε ≈ 0.35 measured from the simulations.

III. MICRO-MACRO TRANSITION

To extract macroscopic properties from DEM, we use
the spatial coarse-graining approach. This technique was
used earlier in Refs. [16, 33, 34]. The averaging is per-
formed over toroidal volumes, assuming rotational invari-
ance in the tangential direction over several snapshots of
time. The averaging procedure for a three dimensional
system is explained in [15, 17]. The simulation is run for
a total time of 22 s and transient data are obtained by
temporal averaging over every 5 snapshots with a step
of 0.015 s, starting from the onset of shear. We obtain
the local macroscopic quantities like shear rate γ̇, liquid
bridge volume Vb, liquid film volume Vf and the contact
number Cw for further analysis. We distinguish between
the contacts with liquid bridges and without, which is
significant for wet granular materials.

A. Identifying the shear band

We analyze the evolution of the liquid bridge volumes
for initial conditions A and B as explained in Section
II D. The objective is to study the transients of liquid
re-distribution under shear. Thus, we focus on the region
inside the shear band where dry systems reach a critical
state after large enough shear. We define the shear band
region by accumulating all local points having shear rate
higher than a threshold value. This threshold value varies
at every height and is defined as a fraction α of the maxi-
mum shear rate at the center of the shear band at a given
height, γ̇max(z). Thus, we consider the shear band region
as all local points having shear rate γ̇(r, z) ≥ αγ̇max(z) as
shown in figure 3. For dry granular systems, the critical
state is achieved at a constant pressure p and local shear
rate condition over regions with shear rate larger than
a certain α (dependent on the duration of shear) cor-
responding to the region of system that was sufficiently
sheared to be re-structured.

B. Wet shear band phenomenology

While the shear band is well established above this
shear rate for wet granular materials also, our analysis
of liquid re-distribution shown in the latter sections are

γ̇ = αγ̇max

γ̇ = γ̇max
p

z

r

FIG. 3. Schematic diagram of simulation set-up showing the
shear band. Red dots indicate local points for our analysis
with size of the dots given by the local pressure. The grey
shaded area denotes the shear band (γ̇ > αγ̇max) and the
bold line shows the shear band center (γ̇ = γ̇max).

averaged over the shear band region corresponding to
α = 0.4 at different heights in the system. Additionally,
the relative shear rate threshold α is varied from 0 to
0.8 to inversely vary the width of the shear band to see
its effect. Thereby, we extract local data (shown by the
red dots) corresponding to the regions as marked by the
shaded area in figure 3. We see the evolution of the
macro quantities like the mean liquid bridge volume 〈Vb〉
and the contact number Cw corresponding to the region
inside the shear band as a function of local shear γ. We
then analyse the transients for the shear band evolution
to obtain the transients for liquid re-distribution inside
the shear band.

IV. RESULTS

The main objective of our work is to understand the
liquid bridge volume re-distribution process under shear.
We show in Sections IV A and IV B that different ini-
tial conditions of liquid bridge volume lead to the same
re-distribution of liquid bridge volumes when sheared to
an intermediate state. This intermediate state, when the
liquid bridge volume become independent of the initial
conditions, is termed as the psuedo-critical state. Fur-
thermore, we describe the effect of the different parame-
ters, e.g., the width of the shear band, saturation, and the
maximal liquid bridge volume on the transient evolution
and the intermediate pseudo-critical state in Sections
IV C, IV D and IV E, respectively. Section IV F gives an
overview of the state beyond the liquid re-distribution
transient when the liquid migrates out of the shear band
by a shear rate dependent diffusive process on very large
shears.

A. Transients for liquid re-distribution

In this section, we describe the transients for liquid re-
distribution for unsaturated granular materials subjected
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to shear with different initial conditions for initial condi-
tions A and B as explained earlier. For our analysis on
the re-distribution of the liquid bridges, we obtain the
histogram distribution of the liquid bridge volume at dif-
ferent times with 100 bins of the histograms. We show
the overlay of the histograms of liquid bridge volume dis-
tribution at different times with lines instead of the bars
as shown in figure 4.

We obtain the global shear γg = 2πRoΩ∆t/(Ro − Ri)
by scaling the distance traversed by a particle on the
outer wall 2πRoΩ∆t in time ∆t by the distance between
the annular space Ro − Ri. We use that scaling factor
as this is very simple and dependent on the geometry of
the system. There can be other length scales like the the
width of shear band, which is about half this geometry
dependent scale Ro − Ri, or the particle diameter 2rp
which is about 40 times smaller. Figure 5(a) shows the
evolution of liquid bridge volume distribution over global
shear γg for initial condition A. Initially, the mean dis-
tribution of liquid bridge volume is lower than the inter-
mediate pseudo-critical state distribution of liquid bridge
volume. We start from an initial condition of all particles
having a liquid film of volume V 0

f = 50 nl. Then, liquid
bridges are formed, even at no shear condition, wher-
ever contacts are detected, in random sequence. Hence,
the initial liquid bridge distribution number is lower than
the intermediate pseudo-critical state. The initial liquid
volume distribution (γg = 0) shows spikes at volumes
of 40, 30, 20, 10 and 0 nl. Those spikes are a numerical
artifact of having a uniform initial liquid film volumes
V 0
f = 50 nl and setting a fixed maximum allowable liq-

uid bridge volume of Vmax = 40 nl. Thus, those spikes
are expected to vanish for less homogeneous initial dis-
tributions and by not restricting the maximum allowable
liquid bridge volume. The smaller liquid bridge volumes
have a higher count than the larger liquid bridge volumes
but an accumulation in number of the maximal liquid
bridge volumes (Vb = Vmax) is found. With increasing
shear, liquid of the maximal bridges are re-distributed to
the smaller liquid bridges and the overall liquid volume is
conserved inside the shear band in this small shear strain.

Figure 5(b) shows the liquid bridge volume re-
distribution over global shear for initial condition B. Ini-
tially, the distribution of liquid bridge volume is non-
uniform, with a high count of the intermediate liquid
bridge volumes between 10 to 20 nl (higher than the in-
termediate pseudo-critical state), the initial liquid bridge
volume being V 0

b ≈ 11 nl. Other liquid bridges have lower
count (lower than the intermediate pseudo-critical state)
at the initial state. With increasing global shear, liquid
from the intermediate volume of liquid bridges are re-
distributed to other liquid bridges and the overall liquid
volume is conserved inside the shear band in this small
shear strain. Comparing figure 5(a) and (b), it is ob-
served that initial condition A reaches the equilibrium
state faster than initial condition B. Note, that the lo-
cal shear γ inside the shear band center and near the
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FIG. 4. Overlaying of the histogram of liquid bridge volume
distribution with lines for γ̇(r, z) ≥ 0.4γ̇max(z) after 6.03 s
(γg = 8.23) for initial condition A.
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FIG. 5. Liquid bridge volume distribution for different ini-
tial conditions (a) 100% liquid film (initial condition A) and
(b) 100% liquid bridge (initial condition B) for γ̇(r, z) ≥
0.4γ̇max(z).

split position of the shear cell is of the same order and
approximately 2 times the value of the global shear γg.
Thus, the legends shown in figure 5(a) and (b) in terms
of global shear are not the quantitative representation of
the local shear inside the shear band. The evolution of
the two limits (that fall out the range of Figures 5 (a) and
(b)), the number of liquid bridges with Vb = 0 (given by
the red and blue ◦) and Vb = Vmax (given by the red and
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blue �) are shown in figure 6. Irrespective of the different
transients behavior, both the number of dry contacts and
the maximal liquid bridge contacts reach the same value
given by the plateau in the intermediate pseudo-critical
state.
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FIG. 6. Number of liquid bridges with Vb = 0 nl (dry con-
tacts) for initial conditions A and B (red and blue ◦ respec-
tively) and number of liquid bridges of volume Vb = Vmax for
initial conditions A and B (red and blue �, respectively) as a
function of global shear γg for γ̇(r, z) ≥ 0.4γ̇max(z).

B. Liquid re-distribution towards an intermediate
pseudo-critical state

Liquid re-distribution in unsaturated granular media is
associated with the formation of new liquid bridges and
the rupture of existing liquid bridges. Figure 7 shows a
comparison of the distribution of the liquid bridge vol-
umes after 6.01 s for the two different initial conditions
A and B. Evidently, an intermediate state is reached
where the rate of liquid bridge formation is balanced
by the rate of liquid bridge rupture and is arrived, ir-
respective of the initial distribution of the liquid in the
system. Here, we focus at the whole shear band re-
gion (γ̇(r, z) > 0.4γ̇max(z)), and confirm that the system
reaches an intermediate state independent of the initial
conditions. In Section IV C we focus on the liquid re-
distribution in the different regions of the shear band.

Figure 8(a) shows the mean liquid bridge volume per
wet contact 〈Vb〉 as a function of local shear inside the
shear band for initial conditions A and B. For each initial
condition, the data points collapse onto a single curve.
Figure 8(b) shows the wet contacts per particle Cw as
a function of local strain for initial conditions A and B.
Again, the data collapse for each initial condition.Thus,
the change in mean liquid bridge volume per wet con-
tact over shear observed inside the shear band center for
initial conditions A and B is an intrinsic phenomenon un-
dergone by each local point inside the shear band before
they reach the intermediate pseudo-critical state. Ini-
tial condition A shows a decrease in mean liquid bridge
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FIG. 7. Overlay of the liquid bridge volume distribution for
initial condition A (red solid line) and initial condition B (blue
dash-dotted line) for γ̇(r, z) ≥ αγ̇max(z) and α = 0.4 after 6.03
s (γg = 8.23).

volume per contact with increasing shear. This can be re-
lated to figure 5(a) as the maximal liquid bridge volumes
(Vmax) are distributed to more number of smaller bridges
until they reach the intermediate pseudo-critical value.
Starting with an initial uniform liquid bridge volume dis-
tribution of V 0

b ≈ 11 nl, initial condition B shows an ini-
tial increase in mean liquid bridge volume per contact
with increasing shear until it reaches a peak mean vol-
ume of liquid bridge approximately V p

b ≈ 28 nl. Further,
the mean liquid volume per contact decreases with in-
creasing shear until they reach the intermediate pseudo-
critical state V c

b ≈ 17 nl. Both initial conditions A and B
reach the same intermediate state in terms of mean liq-
uid bridge volume per wet contact. The number of wet
contacts per particle show an inverse functional behavior
as 〈Vb〉, as the liquid saturation remains constant, but
reach the same intermediate state too for initial condi-
tions A and B. The total elastic potential energy of the
system also reaches the same state for the two initial con-
ditions, irrespective of the different energy they have in
the transients, which depends on the number of dry and
wet contacts in the transients.

During the process of re-distribution of liquid, the liq-
uid volume is approximately conserved inside the shear
band within the range of this small shear scale, when
diffusion is less dominating. The liquid bridge volumes
are re-distributed during the process of contact break-
ing and formation. For initial condition A, as observed
in figure 6, a significant number of liquid bridges have
the maximal volume. Subsequently, more smaller liquid
bridges are formed at the cost of rupture of these criti-
cal volume liquid bridges, resulting in an increase in the
number of wet contacts per particle and a decrease in the
mean liquid bridge volume per wet contact as shown in
figure 8(a) and (b). For initial condition B, as observed
from figure 5(b) and 6, the number of liquid bridges with
higher liquid volume initially increases with time. In the
initial state, all the contacts have an equal liquid bridge
volume V 0

b . When subjected to shear, many contacts
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break, resulting in distributing the liquid to the neigh-
boring contacts, making them grow in liquid bridge vol-
ume content. Hence, here the mean liquid bridge volume
increases at the cost of breaking contacts. Simultane-
ously, the number of wet contacts Cw decreases as shown
in figure 8(b). Thus, in this initial condition wet contacts
are subjected to shear break or rupture more or less in-
stantaneously, distributing the liquid to the neighboring
existing contacts and resulting in a rapid increase in mean
liquid bridge volume and a decrease in the number of wet
contacts before equilibrating towards the pseudo-critical
state.

0 2 4 6 8 10
12

14

16

18

20

22

24

26

28

30

γ

〈V
b
〉[

n
l]

 

 

(a)

z [m]

0.01

0.015

0.02

0.025

0.03

0 2 4 6 8 10
1.5

2

2.5

3

3.5

4

4.5

5

γ

C
w

 

 

(b)

z [m]

0.01

0.015

0.02

0.025

0.03

FIG. 8. (a) Mean liquid bridge volume per contact 〈Vb〉 as a
function of local strain for initial condition A (�) and initial
condition B (◦) and (b) wet contacts per particle Cw as a
function of local strain for initial condition A (�) and initial
condition B (◦) for β = 0.03 nl, for γ̇(r, z) ≥ 0.4γ̇max(z).
Different colors indicate different heights.

C. Dependence on the relative shear rate threshold

As explained in Sec. III A, we define the shear band
region by accumulating all local points having shear rate
higher than a threshold value. This threshold value varies
at every height and is defined as a fraction α of the maxi-
mum shear rate at the center of the shear band at a given
height γ̇max(z). Thus, we consider the shear band region
as all local points having shear rate γ̇(r, z) ≥ αγ̇max(z).
It is evident that the span of the shear band region can

be varied by varying α. A stable shear band is observed,
with a steady pressure and shear-rate, over regions with
shear rate larger than the value αγ̇max(z), α = 0.1. The
local shear rate γ̇ is highest at the shear band center and
drops as a Gaussian function of the distance from the
center of the shear band at a given pressure [30, 46]. We
vary the width (or distance from the center) of the shear
band by varying α = 0.0 to 0.8 and thereby see the effect
on the liquid re-distribution. Figure 9(a) shows the liquid
distribution of wet contacts for different α, excluding the
values for Vb = 0 and Vb = Vmax. Naturally, the number
of contacts increases with decreasing α. However, while
we observe a uniform difference between the number of
contacts between α = 0.2 to 0.8, a significant difference is
observed between α = 0.0 and 0.2. Figure 9(b) shows the
normalised liquid bridge distribution for different width
of the shear band. Note, that here we normalise the his-
togram for liquid bridge distribution by scaling with the
total number of liquid bridges in the given histogram.
The normalised distributions collapse for all width of the
shear band, signifying that the liquid bridge distribution
is identical for any width of the shear band region. It is
to be noted that here α = 0 excludes the liquid bridge
distribution near the boundaries.
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B for γ̇(r, z) ≥ αγ̇max(z) and α varied from 0 to 0.8 after 6.03
s (γg = 8.23).
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D. Dependence on the maximal liquid bridge
volume

In this sub-section we discuss the effect of increasing
the maximal value on the overall dynamics of liquid re-
distribution. As a model simplification, we do not allow
the formation of liquid clusters via bridge coalescence
by using a maximal Vmax of the bridge volumes which
must not be exceeded. The maximal liquid bridge vol-
ume Vmax is varied in different simulations as explained
in Section II C, Eq. 5. Figure 10(a) shows the mean liq-
uid bridge volume 〈Vb〉 as a function of local strain for
different Vmax. Note, that with increase in Vmax the max-
imum interaction distance between interacting particles i
and j increases. Thus, the number of initial wet contacts
increases with Vmax. The initial liquid bridge volume
V 0
b ≈ 11 nl is kept the same for all the simulations. The

peak liquid bridge volume Vp and the intermediate liq-
uid bridge volume Vi also increase with increasing Vmax.
Figure 10(b) shows that the number of wet contacts per
particles decreases with increasing Vmax. Thus, allowing
clustering of liquid leads to higher mean liquid bridge
volume per contact and less number of wet contacts per
particle in the intermediate pseudo-critical state. How-
ever, for large enough β (β > 0.1), this limit parameter
does not affect the system behavior anywhere. Thus,
even though Vmax is very large for the extreme cases,
〈Vb〉 is well within the accuracy of the Willet model, i.e.,
very few number of liquid bridges are formed which are
of large liquid bridge volume. Thus, it is significant to
note that we need not necessarily restrict the maximum
allowed liquid bridge volume, and can keep this as a free
parameter.

E. Dependence on the liquid saturation

In this sub-section, we study the effect of liquid sat-
uration on the liquid re-distribution process. The bulk
saturation is varied by varying the initial liquid film vol-
ume on the particles as mentioned in Section II D, Eq. 7.
Figure 11(a) shows the mean liquid bridge volume for ini-
tial condition B as a function of local strain for different
V 0
f . It is evident that the mean liquid bridge volume 〈Vb〉

increases with increasing saturation, i.e., bridges hold
larger volumes of liquid with increasing saturation. All
the other parameters like the peak liquid bridge volume
Vp and the intermediate state liquid bridge volume Vi also
increase with saturation. Figure 11(b) shows the mean
fraction of wet contacts per particle for initial condition
B as a function of local strain. The number of contacts
per particle remains almost the same, which depends on
the initial packing, irrespective of the local saturation.
The number of wet contacts per particle increases with
increasing saturation. Thus, both the mean liquid bridge
volume per contact and the number of contacts per par-
ticle increases with increasing saturation in the system.

10
−2

10
−1

10
0

10
1

0

10

20

30

40

50

60

70

80

90

γ

〈V
b
〉[

n
l]

Vmax

 

 

(a)

z [m]

0.01

0.015

0.02

0.025

0.03

10
−2

10
−1

10
0

10
1

0

1

2

3

4

5

6

7

γ

C
w

Vmax

 

 

Vmax (b)

z [m]

0.01

0.015

0.02

0.025

0.03

FIG. 10. a) Mean liquid bridge volume per contact and b)
fraction of wet contact as a function of local strain for initial
condition B for different different maximal liquid bridge vol-
ume quantified by β, / β = 0.03, 4 β = 0.08, � β = 0.15,
◦ β = 0.23, � β = 0.45 and O β = 0.60 for α = 0.4 with
initial condition B as initial condition.

F. Diffusive and Drift transport of liquid

There are two relevant processes that cause the spread-
ing of liquid. It is known that in shear flows, particles un-
dergo a self-diffusive motion and therefore, liquid which
is carried by the menisci will also diffuse in space [47, 48].
These authors observed that the particle or liquid diffu-
sivity is proportional to the local shear rate in quasi-static
dense flows. Secondly, there is a transport of liquid asso-
ciated with liquid bridge rupture. The overall liquid mi-
gration is a non-steady state diffusive process and occurs
over a relatively larger scale of shear. The diffusive liquid
transfer is triggered inside the shear band at the onset of
shearing. However, the molecular diffusion mass trans-
port mechanism is known to be a slower process. Hence,
at the initial shear scale, the liquid re-distribution domi-
nates over the diffusive liquid transport process. This is
shown in figures 12(a) and (b). The data shown in Figure
8 is re-plotted in Figure 12, but on a log-scale and for a
larger range of shear values, in order to show the long
shear-scale behavior of the liquid re-distribution process.

Figure 12(a) shows the mean liquid bridge volume per
wet contact inside the shear band as a function of local
strain for initial conditions A and B. Figure 12(b) shows
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FIG. 11. (a) Mean liquid bridge volume per contact (b) num-
ber of wet contacts per particle as a function of local strain
for different saturation O V 0
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for α = 0.4 with initial condition B as initial condition.

the fraction of wet contacts as a function of local strain
inside the shear band for initial conditions A and B. A
dramatic change in the mean liquid bridge volume and
the number of wet contacts is observed during the initial
phase of shearing. This is evidently the phase of liq-
uid re-distribution. The system reaches a pseudo-critical
state followed by this when both the mean liquid bridge
volume per contact and the number of wet contacts per
particle reaches a temporary steady state. On further
shear, the mean volume of liquid bridge per contact de-
creases slightly and the number of wet contacts per par-
ticle slowly decays. The overall liquid content decreases
inside the shear band in the long term. This is evidently
the regime when diffusive transfer of liquid is dominat-
ing. Though, we state this mode of liquid transfer as a
diffusive process, when one this liquid transfer equation
is described as a drift-diffusive process in a different set
of coordinate system. These mechanisms of liquid trans-
fer are interesting, but beyond the scope of the present
study.
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FIG. 12. a) Mean liquid bridge volume per contact and b)
wet contacts per particle as a function of strain for initial
condition A (4) and initial condition B (◦).

V. CONCLUSIONS

The transient behavior of liquid transport and re-
distribution are studied for different initial liquid distri-
butions in a split-bottom ring shear cell. Governed by
the rupture of existing, and the formation of new liquid
bridges, the initial distribution of liquid in the system
reaches a pseudo steady- or critical-state within (local)
shear strains of around γ̇ / 2− 4, almost independent of
the initial liquid distribution.

While rapid liquid re-distribution is dominating at
small shear strains, shear-driven slow liquid transport
away from the shear band is dominating for larger shear
strains above γ̇ ≈ 10 − 20. The shear band becomes
dry, devoid of wet contacts in this later regime. Liquid
is transported out (diffusion-like) towards the tails of the
shear band.

Besides the liquid-properties, the behavior at small
strain rates is also influenced by the bulk saturation in
the system and the liquid bridge limit-volume imposed in
our model. As expected, the mean liquid bridge volume
per contact and the number of wet contacts per particle
both increase with increasing saturation. Further, the
mean liquid bridge volume per contact increases, but the
number of wet contacts per particle decreases with in-
creasing limit-volume Vmax, ensuring conservation of liq-
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uid. For very large Vmax, the mean liquid volume prob-
ability distribution reaches a steady state value with the
majority of the contacts within the validity of the Wil-
let model, and well below the volume needed to fill the
pores; thus the liquid distribution is mostly unaffected
by the limit-parameter.

The first transient of liquid re-distribution that is ex-
plained in this paper, happens on a very short strain
scale. During this phase, liquid is conserved within the
shear band and only local rearrangement of the liquid
bridges dominates, dominates, before a liquid front builds
up and moves outwards. The second transient happens
at moderate to large strains and appears almost like a
steady state due to the slowing down of the liquid front
in the tails of the shear band. The third transient hap-
pens on an even larger strain (time) scale and leads to a
complete drying of the shear-band. We are now also theo-
retically studying the liquid transport on the large strain
scale [49], under quasistatic conditions, when liquid is
transported out of the shear band. While the simplest
picture of diffusive transport with a constant diffusivity,
cannot explain the dynamics of liquid transport and the
drying of the shear band, a model with a variable, strain-
rate dependent coefficient of diffusion can [23]. However,
the non-constant diffusion leads to drift-like rather than
diffusive features (rapid build-up and narrowing of the
liquid front), making the basic understanding difficult.
By transforming the variables, one can enforce a diffu-
sion term with constant diffusivity, which yields a drift

term with a variable drift-coefficient. By decomposing
the transport equations into drift and diffusion, the lo-
cation of the peak liquid concentration can be predicted
analytically, without having to numerically solving the
transport equations. In the vicinity of the shear band
center, where the Peclet number Pe� 1, diffusion dom-
inates drift. Away from the shear band center, where
Pe ≈ 1, drift and diffusion become comparable.

Our present study on liquid bridge re-distribution is
limited to very small saturation of liquid in granular
media. This works in the pendular regime where liq-
uid bridges are distinctly present, connecting two parti-
cles. However, expecting this model to work beyond the
pendular regime is questionable. Also, our results show-
ing the evolution of liquid re-distribution from different
initial conditions need experimental validation, for com-
pleteness. The liquid bridge re-distribution evolution is
driven by the shear rate and is dependent on the local
strain conditions. Thus, a generalization of our studies
with varying shear rate is worth doing. Likewise, the
model of liquid redistribution at break-up and forming
of liquid bridges at contact relies on several simplifica-
tions that might not work for all materials and for faster
shear rates and thus have to be tested experimentally.
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13, 109 (2011).
[17] A. Singh, V. Magnanimo, K. Saitoh, and S. Luding, New

Journal of Physics 17, 043028 (2015).
[18] S. Roy, S. Luding, and T. Weinhart, New Journal of

Physics 19, 043014 (2017).
[19] V. Richefeu, M. S. El Youssoufi, and F. Radjai, Physical

Review E 73, 051304 (2006).
[20] S. Turek and A. Ouazzi, Numerical simulation of powder

flow by Finite Element methods (Univ., 2006).
[21] F. Radjai and V. Richefeu, Philosophical Transactions.

Series A, Mathematical, Physical, and Engineering Sci-
ences 367, 5123 (2009).

[22] S. Roy, S. Luding, and T. Weinhart, in EPJ Web of
Conferences, Vol. 140 (EDP Sciences, 2017) p. 03065.

[23] R. Mani, D. Kadau, D. Or, and H. J. Herrmann, Physical
Review Letters 109, 248001 (2012).

[24] R. Mani, C. Semprebon, D. Kadau, H. J. Herrmann,
M. Brinkmann, and S. Herminghaus, Physical Review
E 91, 042204 (2015).

[25] R. Mani, D. Kadau, and H. J. Herrmann, Granular Mat-
ter 15, 447 (2013).

[26] M. Scheel, R. Seemann, M. Brinkmann, M. Di Michiel,



12

A. Sheppard, and S. Herminghaus, Journal of Physics:
Condensed Matter 20, 494236 (2008).

[27] M. M. Kohonen, D. Geromichalos, M. Scheel, C. Schier,
and S. Herminghaus, Physica A: Statistical Mechanics
and its Applications 339, 7 (2004).

[28] S. Herminghaus, Advances in Physics 54, 221 (2005).
[29] F. Bianchi, M. Thielmann, R. Mani, D. Or, and H. J.

Herrmann, Granular Matter 18, 75 (2016).
[30] J. A. Dijksman and M. van Hecke, Soft Matter 6, 2901

(2010).
[31] G. H. Wortel, J. A. Dijksman, and M. van Hecke, Phys-

ical Review E 89, 012202 (2014).
[32] A. Singh, V. Magnanimo, K. Saitoh, and S. Luding,

Physical Review E 90, 022202 (2014).
[33] S. Luding, Particulate Science and Technology 26, 33

(2008).
[34] S. Luding, Particuology 6, 501 (2008).
[35] R. Schwarze, A. Gladkyy, F. Uhlig, and S. Luding, Gran-

ular Matter 15, 455 (2013).
[36] A. Gladkyy and R. Schwarze, Granular Matter 16, 911

(2014).
[37] T. Weinhart, D. Tunuguntla, M. van Schrojenstein-

Lantman, A. van der Horn, I. Denissen, C. Windows-
Yule, A. de Jong, and A. Thornton, in Proceedings of the
7th International Conference on Discrete Element Meth-
ods (Springer, 2017) pp. 1353–1360.

[38] A. R. Thornton, D. Krijgsman, A. te Voortwis, V. Og-
arko, S. Luding, R. Fransen, S. Gonzalez, O. Bokhove,
O. Imole, and T. Weinhart, Discrete Element Methods
6 (2013).

[39] C. D. Willett, M. J. Adams, S. A. Johnson, and
J. Seville, Langmuir 16, 9396 (2000).

[40] B. Derjaguin, Colloid and Polymer Science 69, 155
(1934).

[41] G. Lian, C. Thornton, and M. J. Adams, Journal of
Colloid and Interface Science 161, 138 (1993).

[42] M. Scheel, R. Seemann, M. Brinkmann, M. Di Michiel,
A. Sheppard, B. Breidenbach, and S. Herminghaus, Na-
ture Materials 7, 189 (2008).

[43] T. Weigert and S. Ripperger, Particle & particle systems
characterization 16, 238 (1999).

[44] N. Mitarai and F. Nori, Advances in Physics 55, 1,1
(2006).

[45] A. Denoth, Journal of Glaciology 28, 357 (1982).
[46] A. Ries, D. E. Wolf, and T. Unger, Physical Review E

76, 051301 (2007).
[47] B. Utter and R. P. Behringer, Physical Review E 69,

031308 (2004).
[48] C. S. Campbell, Journal of Fluid Mechanics 348, 85

(1997).
[49] S. Roy, S. Luding, W. K. Otter, A. Thornton, and

T. Weinhart, Journal of Fluid Mechanics (to be sub-
mitted).


