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Over the last 25 years a lot of work has been undertaken on constructing continuum
models for segregation of particles of different sizes. We focus on one model that is
designed to predict segregation and remixing of two differently sized particle species. This
model contains two dimensionless parameters, which in general depend on both the flow
and particle properties. One of the weaknesses of the model is that these dependencies
are not predicted; these have to be determined by either experiments or simulations.

We present steady-state simulations using the discrete particle method (DPM) for

bi-disperse systems with different size ratios. The aim is to determine one parameter
in the continuum model, i.e., the segregation Péclet number (ratio of the segregation
velocity to diffusion) as a function of the particle size ratio.

Reasonable agreement is found; but, also measurable discrepancies are reported;
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mainly, in the simulations a thick pure phase of large particles is formed at the top of
the flow. In the DPM contact model, tangential dissipation was required to obtain strong
segregation and steady states. Additionally, it was found that the Péclet number increases
linearly with the size ratio for low values, but saturates to a value of approximately 7.35.

Keywords: Granular materials; DPM (DEM); Segregation; Continuum approach.

PACS Nos.: 81.05.Rm, 45.70.Mg

1. Introduction

Many industrial processes use materials in a granular form, as they are easy to

produce and store. A common industrial problem, especially in the food and phar-

maceutical industry, is generating a consistent blend thus suppressing the natural

tendency of mixed granular materials to segregate (e.g. see Refs 14, 31, 39). Gen-

erating high-quality homogeneous mixtures on an industrial scale is difficult and

this fact is illustrated by the large number of different types of mixers available e.g.

tumbling-, ribbon-blade-, rotating-, pneumatic-, air-jet-mixers; each with numerous

competing designs. Understanding segregation and mixing in these types of appara-

tus remains an active area of research in both academia and industry. Additionally,

segregation during transport and processing represents a huge problem in many

other industrial processes, but also, remains poorly understood.

There are many mechanisms for the segregation of dissimilar grains in granular

flows,4 including inter-particle percolation,6,19 convection,8,11,30 density differences,

collisional condensation,20,30 differential air drag, clustering,35 ordered settling and

temperature driven condensation;19,30 however, segregation due to size-differences is

often the most important.10 This study will focus on dense granular chute flow where

kinetic sieving32,37 is the dominant mechanism for particle-size segregation. The

basic idea is: that as grains avalanche down-slope, the local void ratio fluctuates and

small particles fall into the gaps that open up beneath them, as they are more likely

to fit into the available space than the large ones. The small particles, therefore,

migrate towards the bottom of the flow and lever the large particles upwards due

to force imbalances. This was termed squeeze expulsion by Savage and Lun.37 In

frictional flows this process is so efficient that segregated layers rapidly develop,

with a region of 100% large particles separated by a concentration jump from a

layer of 100% fine particles below.37,40,42 An experiment with two different density

and sized particle species is illustrated in Figure 1, reproduced from Thornton’s

PhD thesis.40 It shows the flow of red, large, dense, particles and white, small, less

dense, particles from a hopper containing an approximately homogeneous mixture.

A region of nearly pure, large, particles is formed near the free-surface, immediately

on exiting the gate of the hopper. This layer grows in thickness as the material

flows down the slope, due to the downward percolation of the smaller material.

As the small material percolates, squeeze expulsion forces the large particles back

upwards, forming a similar growing layer of nearly pure, small particles at the

bottom of the flow. This process continues until these pure regions meet and the
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Fig. 1. A series of snapshots from experiments consisting of a 1:1 mixture, by volume, of sugar
(red) and glass (white) particles down an inclined plane. The chute is made of perspex and is 5.1cm
wide and 148cm long with an incline of 26◦ to the horizontal. The end of the chute was closed and
hence a shock wave is generated when the material reaches the bottom. This shock propagates up
the chute until reaching the hopper. As the shock passes, the depth of the flow is seen to increase
in thickness. The images on the left-hand side show the material flowing before any material has

reached the bottom and generated a shock wave. The images on the right are for the final deposit
once the flow has come to rest. The top panels are for a gate height (initial depth) of 5cm and the
bottom panels 3cm. The sugar (red) particles have density 1.2041 ± 0.0022g/cm3 and diameter
1.5165± 0.1093mm; whereas the glass (white) particles have a density 2.4913± 0.0069g/cm3 and
diameter 0.7180 ± 0.0861mm. The screws from the base of the chute into the side walls are 18cm
apart. Images taken from Thornton’s Ph.D. Thesis.40

flow is inversely graded with large material above small. In this experiment density

differences between the particles do add weak additional buoyancy forces that aid

the segregation; but, this effect is secondary.10 The original experiments of Savage &

Lun37 and Vallance & Savage42 used particles that only differed in size. An image

from these experiments can be found in Thornton, Gray and Hogg41 and clearly

shows the same structure with strong inverse grading.

In this publication we will use the Discrete Particle Method (DPM), e.g. see Refs

7, 26, 44, also known as the Discrete Element Method, to investigate segregation

in dense granular chute flows. The ultimate aim is to use DPM to both validate

the assumptions of kinetic sieving based segregation models, and to aid with the
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calibration of the free parameters that appear in these models. Despite the large

number of discrete particle simulations of segregation in industrial chutes, and other

apparatus, very few systematic studies have been performed for straightforward

chute flows. Using simple chute geometries allows the results to be more easily

compared to continuum theories enabling the determination of macro-parameters

as a function of the DPM micro-parameters. We take the first step in this direction

by investigating how the ratio of the strength of segregation to diffusion depends

on the size ratio.

In summary, we will address three questions: (i) what is the minimal DPM

contact model required to get segregation similar to that seen in experiments, (ii)

how does the ratio of segregation to diffusion depend on the size ratio and (iii) how

do our DPM results compare with a continuum theory, previously reported Monte

Carlo simulations and experimental results?

2. The Discrete Particle Method

Many researchers have used DPM simulations to investigate segregation in a variety

of situations and in this publication we give a brief overview. DPM has been used to

investigate: density segregation in rotating cylinders;23 flow of sintered ore and coke

into blast furnaces;33,34,46 size-segregation of magnetic particles in chutes;47 numer-

ous powder pharmaceutical applications including transport, blending, granulation,

milling, compression and film coating;22 and, sieving or screening.5,25 However, of

particular interest to this research, is the investigation of steady-state segregation

profiles for varying density and size differences in chute flows by Khakhar et al.24

They used DPM to investigate density effects and Monte Carlo simulations for

different sized particles.

We use a DPM to perform simulations of a collection of bi-dispersed spherical

particles of different diameters ds and dl, with the same density ρ; each particle i

has a position ri, velocity vi and angular velocity ωi. It is assumed that particles are

spherical, soft, and the contacts are treated as occurring at single points. The relative

distance between two particles i and j is rij = |ri−rj |, the branch vector (the vector

from the centre of the particle to the contact point) is bij = −(di − δnij)n̂ij/2, the

unit normal is n̂ij = (ri − rj)/rij , and the relative velocity is vij = vi − vj . Two

particles are in contact if their overlap,

δnij = max(0, (di + dj)/2− rij),

is positive. The normal and tangential relative velocities at the contact point are

given by

vn
ij = (vij · n̂ij)n̂ij , and vt

ij = vij − (vij · n̂ij)n̂ij + ωi × bij − ωj × bji.

Particles are assumed to be linearly viscoelastic; therefore, the normal and tan-

gential forces are modeled as a spring-dashpot with a linear elastic and a linear

dissipative contribution.7,26 Hence, the normal and tangential forces, acting from j
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on i, are given by

fn
ij = knδnijn̂ij − γnvn

ij , f t
ij = −ktδtij − γtvt

ij ,

where kn and kt are the spring constants and, γn and γt the damping constants.

The elastic tangential displacement, δtij , is defined to be zero at the initial time of

contact, and its evolution is given by

d

dt
δtij = vt

ij − r−2
ij (δtij · vij)rij , (1)

where the second term corrects for the rotation of the contact, so that δtij · n̂ij = 0.

When the tangential to normal force ratio becomes larger than the microscopic fric-

tion coefficient, µp, the tangential spring yields and the particles slide, truncating

the magnitude of δtij as necessary to satisfy |f t
ij | < µp|fn

ij |. A more detailed descrip-

tion of the contact law used can be found in Weinhart et al.44 and for a detailed

discussion of contact laws, in general, we refer the reader to the review by Luding.26

The total force on particle i is a combination of the contact forces fn
ij + f t

ij

between all particle pairs i, j, currently in contact, and external forces, which for

this investigation will be limited to only gravity. We integrate the resulting force

and torque relations in time using Velocity-Verlet2 and forward Euler with a time

step ∆t = tc/50, where tc is the contact duration26 given by

tc = π/

√

kn

mij
−
(

γ n

2mij

)2

, (2)

with reduced mass mij = mimj/(mi+mj). The base is composed of fixed particles,

which are endowed with an infinite mass and, thus are unaffected by body and

contact forces: they do not move.

Obtaining macroscopic fields from DPM simulations is a non-trivial task, espe-

cially near a boundary. We will use an advanced and accurate spatial coarse-graining

procedure.3,12 For the present study, we only require the volume of the small par-

ticles,

V s(r, t) =
π

6
d3s

∑

i∈S

W (r − ri(t)) , (3)

and the total particle volume

V (r, t) =
π

6

∑

i

d3iW (r − ri(t)) , (4)

where W is a coarse-graining function, and S denotes the set of small particles. In

this publication W is taken to be a Gaussian of width, or variance, ds/2, i.e.,

W(r − ri(t)) =
1

(
√
2πds/2)3

exp

(

−|r − ri(t)|2
2(ds/2)2

)

. (5)

For information on how to construct other fields, we refer the reader to Goldhirsch12

and for an extension that is still valid near a boundary see Weinhart et al.45
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3. Continuum model of segregation

The first model of kinetic sieving was developed by Savage and Lun,37 using a sta-

tistical argument about the distribution of void spaces. This model was able to

predict steady-state size distributions for simple shear flows with bi-dispersed gran-

ular materials. Later, Gray and Thornton18,40 developed the same structure from

a mixture-theory framework. Their derivation has two key assumptions: firstly, as

the different particles percolate past each other there is a Darcy-style drag between

the different constituents (i.e., the small and large particles) and, secondly, particles

falling into void spaces do not support any of the bed weight. Since the number of

voids available for small particles to fall into is greater than for large particles, it

follows that a higher percentage of the small particles will be falling and, hence,

not supporting any of the bed load. In recent years, this segregation theory has

been developed and extended in many directions: including the addition of a pas-

sive background fluid,40,41 the effect of diffusive remixing,16 and the generalisation

to multi-component granular flows.15 We will use the two-particle size segregation-

remixing version derived by Gray and Chugunov;16 however, it should be noted that

Dolgunin and Ukolov9 were the first to suggest this form, by using phenomenological

arguments. The bi-dispersed segregation-remixing model contains two dimensionless

parameters, which in general will depend on flow and particle properties; examples

include: size-ratio, material properties, shear-rate, slope angle, particle roughness,

etc. One of the weaknesses of the model is that it is not able to predict the de-

pendence of its parameters on the particle and flow properties; these have to be

determined by either experiments or DPM simulations.

Kinetic-sieving models work best in dense, not too energetic flows, where endur-

ing contacts exist. For more energetic flows kinetic theory is more appropriate and

segregation models derived from this framework are applicable, examples include,

Jenkins;20 Jenkins and Yoon;21 and, Alam, Trujillo and Herrmann.1 Using DPM, it

is possible to systematically increase the kinetic energy of the flows and investigate

the transition between dense and kinetic regimes, but this is beyond the scope of

the current investigation, where we only consider the dense regime.

The two-particle segregation-remixing equation16 takes the form of a non-

dimensional scalar conservation law for the small particle concentration φ as a

function of the spatial coordinates x̂, ŷ and ẑ; and, time t̂,

∂φ

∂t̂
+

∂

∂x̂
(φû) +

∂

∂ŷ
(φv̂) +

∂

∂ẑ
(φŵ)− ∂

∂ẑ
(Srφ (1− φ)) =

∂

∂ẑ

(

Dr
∂φ

∂ẑ

)

, (6)

where Sr is the dimensionless measure of the segregation-rate, whose form in the

most general case is discussed in Thornton, Gray and Hogg41 and Dr is a measure

of the diffusive remixing. In Eq. (6), ∂ is used to indicate the partial derivative, x̂

is the down-slope coordinate, ŷ the cross-slope and ẑ normal to the base coordi-

nate; furthermore û, v̂ and ŵ are the dimensionless bulk velocity components in the

x̂, ŷ and ẑ directions, respectively. The conservation law (6) is derived under the

assumption of uniform total granular volume fraction and is often solved subject
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to the condition that there is no normal flux of particles through the base or free

surface of the flow.

3.1. Steady-state solution

We limit our attention to small-scale DPM simulations, periodic in the x and y-

directions, and investigate the final steady-states. Therefore, we are interested in a

steady-state solution to (6) subject to no-normal flux boundary condition, at ẑ = 0

(the bottom) and 1 (the top), that is independent of x̂ and ŷ. Gray and Chugunov16

showed that such a solution takes the form,

φ =

(

1− e(−φ0Ps)
)

e(φ0−z)Ps

1− e(−(1−φ0)Ps) + (1− e−φ0Ps) e(φ0−z)Ps

, (7)

where Ps = Sr/Dr is the segregation Péclet number and φ0 is the mean concen-

tration of small particles. This solution represents a balance between the last two

terms of (6) and is related to the logistic equation. In general, Ps will be a function

of the particle properties, and we will use DPM to investigate the dependence of Ps

on the particle size ratio

σ = ds/dl. (8)

It should be noted that σ has been defined such that it is consistent with the original

theory of Savage and Lun;37 however, with this definition only values between 0 and

1 are possible. Therefore, we will present the results in terms of σ−1 which ranges

from 1 to infinity. The useful property of the steady-state solution (7) is that the

profile is only a function of the total small particle concentration φ0 and Ps: It

allows Ps to be determined from a simple periodic box DPM simulation.

3.2. Non-dimensionalisation of the DPM results

The DPM results presented in Section 4 will be averaged in the x- and y-directions

and hence, we will obtain local volumes of both the total granular (4) and small

particles (3) as a function of z only. For comparison with the non-dimensional

analytical solution (7) the results will be non-dimensionalised by the scaling

ẑ = (z − b)/(s− b) , φ = V s/V, (9)

where b is the location of the base of the flow, s the location of the free surface

and V s and V are given by equations (3) and (4), respectively. Hence, the mean

concentration, φ0, of small particles is given by

φ0 =
1

s− b

∫ s

b

φ(z) dz =

∫ 1

0

φ(ẑ) dẑ. (10)

It is then possible to directly compare (7), obtained subject to the no-normal flux

condition at ẑ = 0, 1, with the steady-state volume fraction profiles, φ(z), obtained

from the simulations. Then, Eq. (7) allows the determination of Ps as a function of

the parameters of the contact model.
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The free surface of the flow is not clearly defined in a DPM simulation and here

two different definitions will be considered. Weinhart et al.44 investigated how to

consistently define the base and free-surface locations for flows over rough bottoms.

Following their results we define both the base and free surface via the downward

normal stress, σzz . For steady uniform flows, it follows directly from the momen-

tum equations that the downward normal stress is lithostatic, i.e., it balances the

gravitational weight. Thus, σzz(z) has to decrease monotonically from a maximum

at the base to zero at the free-surface. However, in order to avoid effects of coarse

graining or single particles near the boundary, we cut off the stress σzz(z) on either

boundary by defining threshold heights

z1 = min{z : σzz < (1− κ)max
z∈R

σzz} and (11a)

z2 = max{z : σzz > κmax
z∈R

σzz} (11b)

with κ = 0.01. We subsequently linearly extrapolate the stress profile in the interval

(z1, z2) to define the base, b, and surface location, s, as the height at which the linear

extrapolation reaches the maximum and minimum values of σzz , respectively,

b = z1 −
κ

1− 2κ
(z2 − z1); and sf = z2 +

κ

1− 2κ
(z2 − z1), (11c)

here the subscript f indicates that this is a definition of the free-surface location.

In granular chute flows there is a layer of saltating particles towards the top of

the flow, where the density decreases with height. This effect is confirmed in the

simulations presented here, see Figure 5. Gray and Chugunov16 suggested that the

theory should not be fitted over the less dense region and defined the top of the

flow as the point where the density starts to decrease. Therefore, we will also use

sd = (1− 2κ)max ρ (12)

to define the surface between the dense and less dense regions, where ρ is the density

of the flow. An illustration of the demarcation between dense and less dense flow is

shown in Figure 5. We will use the notation ẑf to indicate the scaling based on the

free-surface location and ẑd on the location of the dense basal layer.

4. Previous comparison to the theory

The original theory of Thornton and Gray18,40 has been used to investigate shear-

driven segregation in an annular Couette cell.13,28,29 In the papers cited the segrega-

tion rate is assumed to be proportional to the local shear rate and the experimentally

determined velocity profiles are used to solve the continuum model. In these experi-

ments it was not possible to monitor the local volume fraction of the small particles

directly, and it had to be inferred via the measured expansion and compaction of

the sample. They found good agreement between model and theory in the initial

phase, but at later times the segregation rate exponentially slowed down, which is

not captured by the model. Additionally, they observed an increase in the thick-

ness of the sample as the particle profile evolved (Reynolds dilatancy); this effect
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Table 1. List of the values used in the contact model.
Parameters k, γ are chosen such that for a small-s-
mall collision the restitution coefficient rc = 0.6 and
tc = 0.005

√

ds/g. For details of the contact model re-
fer to Section 2.

ρ 2400 kgm−3 kn 29.00Nm−1

g 9.8ms−2 kt 2/7kn

ds, dbase 0.6mm γn, γt 0.0017 s−1

dl (1.1 − 2)ds µp 0.5

is also not included in the model. The measured segregation rates were found to be

non-monotonic in particle size-ratio; however, they considered very large size-ratios

(up-to σ−1 = 4) for which the kinetic sieving process is known to start breaking

down. Savage and Lun37 showed that percolation effects are evident for σ−1 > 2

and stated that spontaneous percolation occurs for σ−1 > 6.464, i.e., small particles

could percolate through the matrix of larger particles simply as a result of gravity,

even in the absence of any shear.

Recently, chute experiments have been performed with a binary mixture of spher-

ical glass particles with size-ratio of σ−1 = 2 down an incline of 29 degrees.43 In

these experiments it was very difficult to produce steady flow conditions and a de-

pendence of the Péclet number on other parameters was observed. For these flow

conditions Péclet numbers in the range 11-19 were reported.

Marks and Einav27 used a cellular automata model to investigate segregation in

granular chute flows. They found good agreement between the model and their sim-

ulations. For simple shear configurations they found sharp jumps in concentration

as predicted by the original low-diffusion theory.18,40

Khakhar, McCarthy & Ottino24 performed a detailed investigation of segrega-

tion, by both size and density differences in granular chute flows. For equal density

different size particles they used Monte Carlo techniques to obtain steady-state pro-

files. Gray and Chugunov16 fitted this data to the steady-state solution (7). They

found that for inelastic particles with σ−1 = 1.11, on an incline of 25o, a Péclet

number of 4 matched the data best. It should be noted that they did not fit across

the entire layer of the flow, but from the top of the dense avalanching layer. Gray

and Chugunov16 used an ad-hoc position for the location of the dense avalanching

layer; we however, will use definition (12).

5. Measured segregation rates

Simulations were run with the parameters given in Table 1. The parameters of the

normal forces were such that the restitution coefficient, for a collision between two

small particles, is

rc = exp−6tcγ
n/(πd3

s
ρ) = 0.6

and the collision time tc = 0.005
√

ds/g for the small particles, where
√

ds/g is the

small particle diameter to gravitational acceleration timescale. In total ten simu-
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Fig. 2. A series of snapshots from the DPM simulations with large (orange) and small (blue)
particles. The rows correspond to distinct particle sizes and columns to different times. Along the
top row σ−1 = 1.1, middle row σ−1 = 1.5 and bottom row σ−1 = 2; whereas, the left column is
for t = 1, middle t = 5 and right t = 60.

lations were performed for values of σ−1 = dl/ds from 1.1 to 2.0 in steps of 0.1.

Initially, only normal forces were ‘turned on’ in the contact model, but these flows

did not settle to a stable steady state. Also, with only normal forces the flow occa-

sionally spontaneously compacted, reducing its thickness by around 15% and then

slowly dilated back to approximately its original density; this effect has not been

observed in experiments. For this reason tangential forces were added to the contact

model with kt = 2/7kn, γt = γn, and µ = 0.8. Including the tangential forces had

three effects: i) the flow settled to a steady state, ii) the compaction effect was

not observed and iii) the degree of segregation was increased. It should be noted

that we also performed simulations with only normal forces and tangential dissipa-

tion. This was sufficient to remove most of the problems; however, the flow was not

quite fully steady and the segregation was slightly weaker. We therefore concluded,

that for the process of segregation in granular chute flows including both tangential

and normal forces leads to better overall behaviour. From this point onwards, only

simulations containing both normal and tangential forces will be considered, with

parameters as given in Table 1.

Figure 2 shows a series of images from the DPM simulations at different times

and values of σ−1. The simulations take place in a box, which is periodic in x

and y, is 5ds wide and 83.3ds long, inclined at an angle of 25o to the horizontal.

The base was created by adding fixed small particles randomly to a flat surface.

The simulations are performed with 5000 flowing small particles and the number

of large particles is chosen such that the total volume of large and small particles
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Fig. 3. Centre of mass (COM), scaled by the flow height, of the small particles (red), large
particles (blue) and bulk (green) as a function of time. Plots are shown for σ−1 = 1.1, 1.3 and
σ−1 = 2. From the plots it is clear all simulations are in steady state by t = 50.

is equal, i.e., φ0 = 0.5 (to within the volume of one large particle). The initial

conditions are randomly distributed without checking for overlaps; this creates a

good homogeneous distribution of particles, but it does mean there are a few large

initial overlaps. The initially large stored potential energy, causes a small ‘explosion’

of particles in the first few time steps, but it is quickly dissipated and has no effect

on the long-term evolution of the flow. To investigate the early evolution of the

segregation t < 1, such initial conditions do not suffice and more care is required to

prepare an initially well mixed configuration.

Qualitatively it can be seen from Figure 2 that the larger σ−1 the stronger the

segregation. For the cases σ−1 = 1.5 and σ−1 = 2 a thick pure phase of large

particles is formed at the top of the flow, but no equivalent thick pure small phase

is formed at the base. At the base a very thin pure layer of small particles is formed

which is at most two particle layers thick. This is due to the base comprising of small

particles and, hence, only small particles can fit in the gaps in the basal surface.

For the case σ−1 = 1.1 some segregation can be observed; but, no pure layers are

formed at either the top or the bottom.

Due to the use of a periodic box, no direct comparison with the large number

of low-diffusion (Ps → ∞), two-dimensional, analytical solutions, that have been

previously published,17,18,29,38,40,41 can be made. However, if the flow is computed

until it reaches a steady state, a comparison with the steady-state solution for the

diffusion case (finite Ps), presented by Gray and Chugunov,16 can be performed.

This steady state only depends on the volume fraction of small particles and the

Péclet number of the flow, as given by Eq. (7). To confirm the flow is in steady state,

the vertical centre of mass (COM) of the small and large particles is computed.

Three examples are shown in Figure 3. As can be seen, initially the COM of the

small particles quickly decreases, while the COM of the large particles rises. This
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Fig. 4. Plots of the small particle volume fraction φ as a function of the scaled depth ẑf . The
black lines are the coarse-grained DPM simulation data and the blue lines are the fit to Eq. (7)
produced with MATLAB’s non-linear regression function. For the fit only Ps is used as a free
parameter. Dotted lines shows the 95% confidence intervals for the fit.

process slows down and eventually the COM becomes stable. For all the values of

σ−1 considered, the COM of the small particles reaches a constant value by t = 50.

Therefore, to obtain good statistics about the z dependence of φ, the data will be

averaged in both x and y and over the interval t ∈ [90, 100]; examples of these

averaged coarse-grained depth profiles are presented in Figure 4.

In Figure 3 the bulk COM is also plotted and it is clear that this remains roughly

at the same depth while the segregation process is taking place. In the larger size-

ratio cases a change in the bulk COM can be seen between the homogeneous mixed

initial conditions and the final segregated state. This effect is expected due to the

compaction effects that are present in the mixed states, for large size ratios; but,

currently this effect is not taken into account in the continuum model, which is one

area where it could be improved. This change in the flow thickness (centre of mass)

was also observed in the previous shear-driven size-segregation experiments.13,28

Additionally, from Figure 3 it is clear that the smaller σ−1, the longer it takes

for the flow to reach steady state. This is an indication that the segregation rate Sr

is weaker for a smaller size difference, i.e. low σ−1, and this lower Sr could be the

source of the lower Péclet number.

Figure 4 shows a fit of Eq. (7) to the small particle volume fraction for several

cases. The fit is performed using non-linear regression as implemented in MATLAB.

The fit is reasonable in all cases, especially considering there is only one degree of

freedom, Ps. From these plots it is clear that the degree of segregation is stronger
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Fig. 5. Plot of the volume fraction of both the small, Φs and large particles, Φl and the bulk
solids volume fraction, Φ, for the case σ−1 = 1.6. The dotted line shows the location between the
basal dense layer and the upper more dilute region as given by definition (12).

as the size ratio is increased. Also, for σ−1 > 1.3 a measurable pure phase of large

particles is generated at the top of the flow. This layer becomes thicker as the

size-ratio is increased. From the plots it can be seen that at the bottom, the flow

becomes very rich in small particles; but, only a thin (2 particle layers) pure phase is

observed. This stronger segregation at the top, compared to the bottom of the flow

is often observed in experiments, see Figure 1; but, is not captured by the current

theory. Finally, in each case an inflection in the profile is observed towards the base,

which is also not predicted by the theory; however, this has been observed before in

the Monte Carlo simulations of Khakhar, McCarthy & Ottino,24 replotted in terms

of volume fraction by Gray and Chugunov.16

Gray & Chugunov16 have previously noted that their theory does not capture

the perfectly pure region at the top of the flow and proposed only fitting to the

dense basal layer. A typical density profile is shown in Figure 5 and the decrease

in density reported by Gray and Chugunov16 can be observed towards the top of

the flow. Therefore, we use (12) to define the transition between the dense basal

layer and the more dilute layer above (indicated by the dotted line on Figure 5).

Fits to this scaling were also performed. When scaling by the location of the basal

layer a higher value of φ0 > 0.5 was computed, as these fits do not include the large

particles in the upper part of the flow. The measured Péclet number for each type

of fit is shown in Figure 6 and from the error bars (95% confidence bounds) it can

be seen that both fits have approximately the same accuracy. Therefore, nothing is

gained by only fitting to the dense basal layer. Also, only fitting to this layer has

the added problem that at the interface, between the dense and less dense layer,

sd, the no-flux condition does not hold, i.e., there is a transfer of particles between

these two layers. Finally, the trend is the same for both fittings, but scaling by the
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Fig. 6. Plot of the Péclet number, as obtained from the fit of Eq. (7) to the DPM data as a
function of particle size ratio σ−1. The crosses indicate data that is scaled using the full flow
depth, i.e., ẑf ; whereas, for the diamonds the flow is scaled by the thickness of the dense avalanche
region, i.e., ẑd.

basal layer does lead to a lower Péclet number, implying a reduction in the degree

of segregation. Therefore, we will only consider scaling by the full flow depth from

this point onwards, i.e., sf .

Figure 6 shows the segregation Péclet number, Ps, as a function of σ−1. Even

for the smallest size ratio, σ−1 = 1.1, Ps is 2.8, indicating that segregation is almost

three times stronger than diffusion. For σ−1 between 1.1 and 1.5 it would appear

that Ps saturates exponentially to a constant value of around Pmax = 7.35. A fit is

shown to

Ps = Pmax(1− e−k(σ−1
−1)) (13)

where k = 5.21 is the saturation constant. Further investigation is required on

how Ps depends on other parameters that appear in the contact model. Previously,

Gray and Chugunov16 compared the model to a Monte Carlo result of Khakhar,

McCarthy and Ottino24, in which σ−1 = 1.11, and found that a value of Ps = 4

fitted the data best. This is a little larger than the value reported here, but the

numerical model and properties are different between the two simulations. Previous

chute experiments43 reported a range of Péclet numbers from 11-19 for σ−1 = 2,

which again is larger than the values we find here, but their experiments were

performed at a higher inclination angle.

For very high size ratios it does appear the Péclet number is beginning to de-

crease, as reported by Golick and Daniels;13 however, the reduction is within the

fitting error, therefore, this is not conclusive. We did not go to higher size ratios as

it is not expected that the model in its current form will capture the key physics. It

does not include the effect of percolation of the small particles, which Savage and
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Lun37 reported needs to be taken into account for values of σ−1 > 2.

6. Conclusions

In summary, we have presented a DPM study of how the Péclet number, Ps, the

ratio of particle size-segregation strength to diffusion, depends on the size ratio

of the particles. Previously, only a fit to a single simulation had been reported.16

These DPM simulations were compared with theoretical predictions, but only for

steady-states; to a previous Monte-Carlo simulation; and, to experiments.

The main findings of this paper are: (i) To get strong segregation and steady

profiles it was necessary to ‘turn on’ the rotational degrees of freedom. This was done

by introducing a tangential sliding friction model; however, only adding tangential

dissipation produced very similar results. (ii) As expected, Ps does increase for

larger particle size ratio σ−1, but appears to saturate to a constant value. (iii)

The results of the DPM were compared to the binary segregation-remixing model

of Gray and Chugunov16; the agreement was good given the model only has one

free fitting parameter, Ps. The major difference between the model and DPM is

the slight asymmetry in the segregation, with a thick pure phase of large particles

forming at the top; but, only a thin perfectly pure layer of small particles appearing

at the base of the flow. The weaker segregation found at the base has previously

been observed in experiments and this effect could be captured in the model, by

introducing diffusion that is a function of the fluctuation energy of the flow. It is

known36 that the fluctuation energy is stronger towards the base and almost zero

at the free surface. Additionally, a small change in the bulk centre of mass was

observed between the homogeneous and the segregated state; again this effect is

not included in the continuum model. However, it could be incorporated in the

three-phase version of Thornton, Gray and Hogg41 as this explicitly models the air

phase and hence, can be extended to allow the bulk granular volume fraction to

vary in height and evolve with time. Hence, in the future we aim to use the results

of DPM simulations to improve the continuum model.

Further investigations are required to determine how the degree of segregation

depends on the parameters of the DPM. Since only steady-state profiles were con-

sidered, it was only possible to ascertain the ratio of the strength of the diffusion to

the strength of the segregation. To measure these two effects independently time-

evolving profiles must be considered, this requires a better procedure to produce the

initial configurations. Additionally, the DPM has highlighted two aspects that are

not captured by the continuum model: the compaction effect and the asymmetry in

the segregation depth profiles.

We have taken the contact model properties of the large and small particles

to be the same, i.e., kn, γn, kt, γt and µ; however, to gain closer agreement with

the experiments it may be better to assume the material properties are equal for

both particle types, i.e., bulk modulus, coefficient of restitution, etc. and hence the

contact properties become size dependent. Finally, this research has shown that



October 21, 2011 10:39

16 Thornton, Weinhart, Luding and Bokhove

DPM can be used to check and validate the assumptions of continuum segregation

models.
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