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Dry, frictional, steady-state granular flows down an inclined, rough surface are studied

with discrete particle simulations. From this exemplary flow situation, macroscopic

fields, consistent with the conservation laws of continuum theory, are obtained from

microscopic data by time-averaging and spatial smoothing (coarse-graining). Two

distinct coarse-graining length scale ranges are identified, where the fields are almost

independent of the smoothing length w. The smaller, sub-particle length scale, w ≪

d, resolves layers in the flow near the base boundary that cause oscillations in the

macroscopic fields. The larger, particle length scale, w ≈ d, leads to smooth stress

and density fields, but the kinetic stress becomes scale-dependent; however, this

scale-dependence can be quantified and removed.

The macroscopic fields involve density, velocity, granular temperature, as well as

strain-rate, stress, and fabric (structure) tensors. Due to the plane strain flow, each

tensor can be expressed in an inherently anisotropic form with only four objective,

coordinate frame invariant variables. For example, the stress is decomposed as: i)

the isotropic pressure, ii) the “anisotropy” of the deviatoric stress, i.e., the ratio of

deviatoric stress (norm) and pressure, iii) the anisotropic stress distribution between

the principal directions, and iv) the orientation of its eigensystem. The strain rate

tensor sets the reference system, and each objective stress (and fabric) variable can

be then related, via discrete particle simulations, to the inertial number, I. This

represents the plane strain special case of a general, local, and objective constitutive

model. The resulting model is compared to existing theories and clearly displays

small, but significant deviations from more simplified theories in all variables – on

both the different length scales.
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I. INTRODUCTION

Granular flows display many interesting phenomena that can also be found in colloidal sys-

tems or complex fluids. However, often Brownian motion and temperature can be ignored,

while diverse modes of energy dissipation, e.g., friction or plastic deformations allow for

non-equilibrium steady state situations. Even though (dilute and moderately dense) colli-

sional flows can be well described by kinetic theory,1 see, e.g., Ref. 2 for the inclined flow

case. There is no closed theoretical framework or rheological model available yet that also

includes the possible co-existence of rapid, intermediate, inertial and slow, quasi-static or

even stagnant regimes under general flow conditions. However, some promising approaches

have recently been proposed, such as Refs. 3–8 and references therein.

The goal of this study is to generalize/extend existing theories based on observations made

from discrete particle simulations of frictional avalanching flows in plane strain steady state

situations.

A rheological model is formulated using (objective) invariants of the tensors and thus is

not restricted to this particular special case. Here, however, we choose a particular coor-

dinate system with flow along the x-axis, varying along height, z, and homogeneous in the

perpendicular direction, y.

A. Granular flows overview

Granular avalanche flows are a representative example and common in natural environments

and industrial processes. They can differ in size by many orders of magnitude. Examples

range from rock slides, containing upwards of 1000m3 of material; to the flow of sinter,

pellets and coke into a blast furnace for iron-ore melting; down to the flow of fine sand

in an hour-glass. The dynamics of these flows are influenced by many factors such as:

polydispersity, variations in density, non-uniform particle shape, complex basal topography,

surface contact properties, coexistence of static, steadily flowing, and accelerating material,

and flow around obstacles and constrictions.

The discrete particle method (DPM), also known as discrete element method, is closely re-

lated to molecular dynamics. It is an extremely powerful tool to investigate phenomena on

the discrete particle and contact scale. With the rapid improvement in computational power,
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the simulation of flows containing millions of particles is now feasible. DPM simulations pro-

vide insight in the microscopic origins of global, larger scale, macroscopic mechanisms; most

of the rich phenomenology can be studied with simple systems of spheres. Furthermore,

via coarse-graining, local macroscopic quantities, like density, strain rate, stress, and struc-

ture (fabric) can be extracted relatively easily from the discrete simulation data (particle

positions, velocities as well as interaction forces and torques).9

Various simulations and experiments have been performed on confined (granular) flows with

the aim to understand and describe their flow behavior by identifying the relevant global

and local physical quantities.

B. Flow modeling overview

A widely accepted basic rheological model for granular flows – in the dense, quasi-static

and inertial regimes – is the so-called µ(I)-rheology.10–13 Many experimental and numerical

studies suggest that the mass density ρ and the macroscopic (bulk) friction µ are functions

of the inertial number,

I = γ̇d
√
ρp/p, (1)

where γ̇ is the shear rate, d the particle diameter, ρp the particle density, and p the (compres-

sive) pressure. Alternative definitions of the inertial number often use the confining stress

σzz, instead of the objective first invariant, i.e., the pressure p; however, σzz is only then

an objective variable, if it is properly defined perpendicular to the flow direction, as can

be done for plane strain shear flows, but not for more general deformation modes.5 On the

other hand, under the often used isotropy assumption, p = σzz, the difference in definitions

of I is hidden, but will be unraveled in this study.54 Since the strain rate tensor defines the

reference system, the macroscopic fields and the involved constitutive models that describe

the flow are then expressed as functions of the scalar I, which is the only objective strain

rate measure. The inertial number can be interpreted as the ratio of two time scales, the

pressure-induced inertial time scale τp = d
√

ρp/p, and the time scale of deformation, i.e., the

inverse strain rate, τγ = γ̇−1. This allows the classification of slow, quasi-static flows as those

with I ≪ 1, when the deformation is much slower than typical inertial relaxation. While

this simple µ(I)-model can predict the flow astonishingly well, it is neither perfect in the

quantitative sense, nor is it qualitatively accurate near the basal and surface boundaries.12
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Various non-local granular stress rheology models3,4,14,15 have been proposed that are able to

reproduce some of the boundary and correlation effects. All of these models remain in spirit

scalar and do not contain other time-scales8,16 or any relation to the anisotropic structure

of the material,5,7,17 which is particularly pronounced close to the flat walls.

A further question is if continuum theories can be developed at all for granular flows, as

they exhibit complex behavior such as force chains and slow cage breaking. To answer this

question, Rycroft et al.18 studied small representative volume elements in silo and shear flow

situations. Their results suggest that reasonable continuum interpretations are possible.

Among their findings was that while the instantaneous stress-strain tensor was strongly

non-collinear (stress and strain eigendirections deviated by up to 15◦), the non-collinearity

decreased significantly when the data was time-averaged.

In the following, like the majority of material/flow models, we use the assumption that the

stress tensor is symmetric in steady state flow, since non-symmetry of stress would lead to

micro-polar or Cosserat-type theories,19,20 which go far beyond the scope of this research.

Various models make additional assumptions that are only valid in certain limits, but can

lead to very elegant and useful constitutive relations, e.g., classical elasticity theory, the

physics of Newtonian fluids, or the µ(I)-rheology introduced above. Examples of simplifying

assumptions that do not hold for general granular flow situations are (i) isotropy (of stress

and/or structure), (ii) a linear relation between stress and strain (rate), (iii) collinearity of

stress and strain (rate), and (iv) associated flow.20,21

C. Anisotropy of stress and structure

However, anisotropy, as often quantified by normal stress differences, has been predicted

and consistently and repeatedly been observed in simulations, theories, and experiments

of sheared flows of complex fluids and granular media, contradicting assumption (i).55 As-

sumption (ii) does not hold in so-called yield-stress fluids as well as in granular mate-

rials, which both include fluid- and solid-like behavior (µ(I → 0) > 0). For large strain

rates and non-symmetric velocity gradients one can observe non-collinear stress-strain (rate)

relations,18,22,23 which makes assumption (iii) problematic. Furthermore, non-associated

flow rules are better suited for many realistic granular materials, like soils, which renders

(iv) also invalid for this type of flow.19,20
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In granular systems, one advantage is that the structure and even the stress tensor can be

experimentally observed with relatively little effort, so that the notion of a fabric tensor is

not only supported by numerical simulations but also by many experiments, as in Ref. 24

and references therein. The most recent studies from the granular community that involve

constitutive relations for stress and fabric support the notion of a structure (fabric) that

evolves differently from the stress.5,7,17

In the much older field of (sheared) complex fluids, qualitatively similar anisotropies have

been observed previously for both (structure) fabric and stress tensors. Clark and Ackerson25

were the first to experimentally observe shear-induced distortion of a suspension of inter-

acting colloidal particles, i.e., a difference between the principal orientation of the fabric

and the strain rate tensor. Shortly after, Hess et al.26–29 derived a tensorial expansion for

the pair correlation function to a tensor of rank 2, also referred to as the anisotropy tensor.

Furthermore, a differential (evolution) equation was presented that related the coefficients

of the expansion to a phenomenological relaxation time of the fluid, and showed a rotation

of the structure tensor w.r.t. the strain rate tensor.

Since stress anisotropy is often classified in terms of the normal stress differences, those are

reviewed in the following. Large-scale geophysical granular flows are often modeled using a

depth-averaged framework, see e.g. Savage and Hutter30. One of their key predictions is a

positive first stress difference for granular avalanches. For a sheared system with flow in the

x-direction, varying with height z, the velocity gradient ∇V = γ̇(z)xz, with respective unit-

vectors x and z, we denote the first (scaled) normal stress difference (between the direction

of the velocity and its variation) as N1 = (σxx − σzz)/p, with σ the compressive stress. The

second (scaled) normal stress difference involves the normal stress in the third, “neutral”

direction and is defined as N2 = (σzz − σyy)/p.

In 1998, Sela and Goldhirsch1 developed closure relations for rapid flows of smooth inelastic

spheres. They used the Chapman-Enskog expansion to develop hydrodynamic equations

to Burnett order, predicting a positive first and second normal stress difference, while Jin

and Slemrod31 regularized this model to remove unphysical instabilities. This model was

generalized by Alam and Luding32,33 to explain the normal stress differences, which changed

sign in their simulations, of uniform two-dimensional shear flow simulations. The first normal

stress difference was positive for dilute flows and slightly negative for very dense flows. A

positive first normal stress difference has also been observed in dense (three-dimensional)

6



suspensions,34,35 where the second normal stress difference was reported to exceed the first.

We follow the ideas of Alam and Luding,33 who observed from simulations, and modeled

theoretically, both positive and negative first normal stress differences (in 2D), and Hartkamp

et al.36 who observed stress anisotropy in molecular flow through nano-channels that extends

further than the layering of density into the bulk of the Lennard-Jones fluid. Such density

oscillations near the surface, a phenomenon already recently reviewed,37 will also be shown

here, but do not (yet) form an ingredient of the model.

D. Motivation of this study

In summary, this paper aims to (i) to provide a description of the full stress tensor for

sheared planar flow, decomposed into state variables describing the non-Newtonian stress

components. Since the model is supposed to work in all situations, we choose to express

these variables in terms of their objective, frame-invariant quantities, and not in components

that are specific to the choice of the (e.g., Cartesian) coordinate system, as is the natural

choice for chute flow simulations. Which tensor invariants are used is not important, since

eigenvalues or other invariants, can all be related to each other – and also to the Cartesian

components – as will be shown at the end of this study. The second objective is to (ii)

observe and quantify the state variables as functions of the governing control parameter(s),

which is (only) the inertial number I for dense, quasistatic, inertial granular flows. We expect

to observe significant differences from the simplifying assumptions outlined in Section IB,

such as the non-collinearity of stress, fabric, and strain rate, and the anisotropy, or shape,

of the tensors, both in the flow plane and perpendicular to it. Finally, we will (iii) look at

the relation between the stress and the fabric, or structure tensor, which might allow us to

determine the micro-structural causes of the stress anisotropy and non-Newtonian behavior.

The paper is organized as follows: Section II gives a description of the system and the sim-

ulation method. In section III, the calculations of microscopic and macroscopic fields are

presented. In section IV, tensors are expressed in terms of their invariants and orientations

with the goal to formulate an objective, generally applicable, local constitutive model. In sec-

tionV, the results of various simulations are shown and analyzed. In sectionVI, the relation

between variables of the constitutive model and the measured microscopic and macroscopic

fields are studied. Finally, in sectionVII, the results are summarized and discussed.
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FIG. 1. DPM simulation for N = 3500 and inclination θ = 24◦ at time t = 2000; gravity direction

g as indicated. The domain is periodic in x- and y-directions. In the z-direction, fixed particles

(black) form a rough base while the surface is unconstrained. Shades/colors indicate speed, from

darkest gray (blue online) through light gray (green/yellow online) to mid-gray (orange online) as

z increases.

II. SYSTEM DESCRIPTION

A discrete particle method is used to investigate granular chute flows as an exemplary case,

in the steady, continuous flow regime. We use a coordinate system where x denotes the flow

direction, y the in-plane vorticity direction, and z the depth direction normal to the base.

The chute is inclined at an angle θ such that gravity acts in the direction (sin θ, 0,− cos θ).

The simulation cell has dimensions l′x× l′y = 20 d′× 10 d′ particle diameters in the (periodic)

x- and y-directions (primes indicate dimensional parameters). Here, all particles are mono-

dispersed with the same diameter d′. The base of the system is a rough surface consisting of

Nb fixed particles, see figure 1. N flowing particles are introduced to the system at random

non-overlapping positions well above the base. Due to gravity they fall and accelerate down

the slope until they reach a steady state, which is then analyzed. This system, its flow

states and a closure for a shallow-layer continuum model were described in more detail by

Weinhart et al.37

We use a linear elastic-dissipative normal force model with frictional forces in tangential
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direction.37,38 The parameters of the system are non-dimensionalized such that the particle

diameter is d = 1, their mass is m = 1, and the magnitude of gravity is g = 1. Therefore,

the particle density, in our units, is ρp = m/V = 6/π, with particle volume V = πd3/6.

The (dimensionless) normal spring and damping constants are kn = 2 · 105 and γ n = 50,

respectively; thus, the collision time (contact duration for pair collisions) is tc = 0.005 and

the coefficient of restitution is en = 0.88. The tangential spring and damping constants

are k t = (2/7)kn and γ t = γ n, such that the frequency of normal and tangential contact

oscillation are similar, and the normal and tangential dissipation are comparable. The

microscopic friction coefficient is set to µc = 0.5.

The interaction parameters are chosen as in Silbert et al.39 to simulate glass particles of

diameter d′ = 0.1mm, which thus represents the unit/dimension of length; using g′ =

9.8m s−2, this fixes the dimensional time scale as t′ =
√

d′/g′ = 3.2ms, so that t′c = t′tc =

16µs, i.e., tc = 0.005, and the dimensional velocity scale is v′ =
√
d′g′ = 0.031m s−1.

Finally, with the density of glass ρ′p = 2500 kgm−3, this sets the unit of mass as m′ =

ρ′p
π
6
d′3 = 1.3 · 10−9 kg. In the rest of the paper we will use the dimensionless units, but the

examples in this paragraph show how to translate between dimensionless and dimensional

values.

We integrate the resulting force and torque equations of motion for all particles in time

using the Velocity-Verlet and Euler algorithms, respectively, with a time step ∆t = tc/50.

The system is integrated between t ∈ [0, 2000] to allow the system to reach a steady state.

The range of steady states was described in detail in Weinhart et al.37 Steady states exist

for inclinations θstop ≤ θ ≤ θacc, where

tan θstop = tan θstop1 +
tan θstop2 − tan θstop1

h/(Ad) + 1
, θacc = 29◦ ± 1◦, (2)

with θstop1 = 17.6◦, θstop2 = 32.3◦ and A = 3.84. To study a wide range of steady flow regimes,

simulations are performed for inclinations θ varying between 20◦ and 28◦ and for different

numbers of flowing particles N = 2000, 4000, 6000 and 8000.

In the following, various different steady state shear flow data sets, in the regime specified

above, will be studied and coarse grained to yield many macroscopic informations (density

ρ, velocity V, stress σ, etc. ) at various heights and thus in many local flow situations. The

coarse-graining procedure is explained next.
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III. STATISTICS

To extract the macroscopic fields, we use the spatial coarse-graining approach as in Weinhart

et al.,9 and references therein, which will be reviewed in this section. It has the following

advantages as compared to other simpler methods: (i) the resulting fields automatically

satisfy exactly the equations of continuum mechanics, even near the flow base, if the inter-

action with the boundary is taken into account, as proposed by Weinhart et al.;37 (ii) it is

not assumed that the particles are spherical (but a single point of contact is required); and,

(iii) the results are valid even for single particles and at one moment in time; no ensemble

averaging is required. Here, however, we apply long-time averaging over a single realization.

A. Mass density and velocity

It is assumed that each particle’s mass is located at its center and that collisions are not

instantaneous (i.e., soft). Furthermore, each particle pair has a single point of contact (i.e.,

the particle shapes are convex), and the contact area can be replaced by a contact point

(i.e., the particles are not too soft). Flow particles are labeled from 1 to N , while boundary

particles are labeled from N + 1 to N +Nb.

From statistical mechanics, the microscopic (point) mass density of the flow, ρmic, at a point

r at time t is defined by

ρmic(r, t) =
N∑
i=1

mδ (r− ri(t)) , (3)

where δ(r) is the Dirac delta function.

A macroscopic mass density field can then be extracted by convoluting the microscopic mass

density with a coarse-graining function W(r), which yields

ρ(r, t) =
N∑
i=1

m

∫
R3

δ (r′ − ri(t))W (r− r′) dr′ =
N∑
i=1

mW (r− ri(t)) . (4)

A Lucy function40 is used for coarse graining, which for three spatial dimensions is

W(r) =
105

16πc3
(
−3 (r/c)4 + 8 (r/c)3 − 6 (r/c)2 + 1

)
, if r := |r| < c, 0 else, (5)

with c the range and w = c/2 the half-width, or standard deviation.56 This function has

two continuous derivatives everywhere and satisfies
∫
R3 W(r) dr = 1. Other coarse-graining
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functions are possible, but the Lucy function has the advantage that it produces twice

differentiable fields and is has compact support. In contrast, common compactly supported

coarse-graining functions such as the Heaviside function or a cut-off Gaussian function do

not have smooth gradients everywhere, whereas using a Gaussian function without a cut-

off radius would be computationally expensive due to its infinite range. Furthermore, the

polynomial form allows us to differentiate and integrate the function analytically, and thus

to exactly evaluate spatial averages and gradients of the resulting fields. The resulting

coarse-grained fields depend only weakly on the choice of the coarse-graining function, but

the width w is the key parameter,41 as will be shown later.

We define the volume fraction as

ν(r, t) =
ρ(r, t)

ρp
=

N∑
i=1

VW (r− ri(t)) , (6)

with V = π
6
d3 the (constant) particle volume.

The coarse-grained momentum density vector j(r, t) has the components

j(r, t) =
N∑
i=1

mviW(r− ri), (7)

where vi is the velocity of particle i. The macroscopic velocity field V(r, t) is then defined

as the ratio of momentum density and density fields,

V(r, t) = j(r, t)/ρ(r, t) . (8)

Density and momentum density exactly fulfill the continuity equation, ∂ρ
∂t
+∇ · (ρV) = 0.9,41

The velocity gradient can now be obtained from the velocity field by a central difference

approximation, see (38), or by averaging the strain rate tensor or displacement gradient

tensor, as described in Refs. 36 and 42.

B. Stress

Next, we consider the momentum conservation equation with the aim of establishing the

macroscopic stress tensor, σ. As we have only repulsive forces, we use the compressive

stress convention such that (compression) pressure is positive. Since we want to describe

boundary stresses as well as internal stresses, the boundary interaction force density, or
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surface traction density, t, has been included, as well as the gravitational force density, ρg,

as described in detail in Weinhart et al.9 The momentum balance equations then take the

form,
∂j

∂t
= −∇ · [ρVV]−∇ · σ + t+ ρg, (9)

where VV denotes the tensor (dyadic) product of two velocity vectors. We split the stress

into its kinetic and contact contributions,

σ = σk + σc, (10a)

from which the (hydrostatic, isotropic) pressure is defined as

p(r, t) = tr(σ(r, t))/3. (10b)

The kinetic and contact stress is defined as

σk =
N∑
i=1

mv′
iv

′
iW(r− ri), (10c)

σc =
N∑
i=1

N∑
j=i+1

f ijrij

∫ 1

0

W(r− ri + srij) ds (10d)

+
N∑
i=1

N+Nb∑
k=N+1

f ikaik

∫ 1

0

W(r− ri + saik) ds, (10e)

with interaction forces f ij = −f ji, branch vectors rij = ri− rj, and contact-to-center vectors

aik = ri − cik, where cik denotes the contact point between the fluid particle i and wall

particle k. Further,

v′
i(r, t) = vi(t)−V(r, t). (11)

is the fluctuation velocity of particle i, which leads to scale dependency effects as discussed

below in subsection VA. The boundary interaction force density

t =
N∑
i=1

N+Nb∑
k=N+1

f ikW(r− cik). (12)

is applied by the base to the flow and has nonzero values only near the basal surface. It can

be introduced into continuum models as a boundary condition for the stress,

σαz(z = b) =

∫
R
tα(z) dz, for α = x, y, z. (13)

For the chute flows presented here, σzz(z = b) = −Nmg cos θ/(lxly), as will be discussed

further in subsection VB.
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C. Temperature and fabric

Further terms can be defined that are not part of traditional stress-strain constitutive rela-

tions.

The so-called granular temperature is a measure of the squared fluctuation velocities, that

can be obtained by scaling the kinetic fluctuation energy density (twice per particle per

degree of freedom per mass),

Tg =
tr(σk)

3ρ
, (14)

but one can also use TB = tr(σk)
3n

,with number density n = ρ/m, equivalent to the thermo-

dynamic temperature kBTB used in atomistic simulations.

The fabric, or structure tensor, is an approximate macroscopic measure of the contact ori-

entation distribution, and is defined by

F =
N∑
i=1

N∑
j=1,j ̸=i

Vnijnij

∫ 1

0

W(r− ri + srij) ds (15)

+
N∑
i=1

N+Nb∑
k=N+1

Vniknik

∫ 1

0

W(r− ri + saik) ds,

with the contact normal unit vector nij = rij/|rij|.

The trace of the fabric is its isotropic invariant and it is proportional to the contact number

density,43,44 with prefactor g3 = 1 for monodisperse, (quasi-)static packings. This leads to

the coordination number,

Z = tr(F)/ν, (16)

and the corrected coordination number, Z∗ = Z(1−ϕr), which excludes the volume fraction

ϕr of particles that are so-called rattlers and thus do not contribute to a mechanically stable

contact-network. Since we consider inertial flow in the following, we will use Z and not Z∗

that is more relevant for static and quasi-static situations. The coordination number Z is

related to the contact/collision rate from kinetic theory fc ∝ Z/tc in the collisional regime.

However, this regime will not be discussed further and we refer the reader to the recent work

by Jenkins and Berzi;2 in the following, we will mostly ignore the dilute, collisional layer at

the top of our chute simulations.
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D. Summary of the coarse grained fields

After coarse graining, in the special steady chute-flow situation chosen, all fields are averaged

over x- and y-directions and in time, which yields data at various different z-locations.

Whether these data can be considered local and if there are regimes of coarse-graining

widths w that yield w-independent data will be discussed in section V.

From one single simulation, due to the inhomogeneous depth profiles, the data already

include a set of different local flow states that can be processed and studied further. The

fields involve scalar (isotropic) variables ρ, Tg, Z, vectors V, and tensors ∇V, σ, F that

are not all independent from each other. Their behavior and relations for different flow

conditions will be discussed in section V, after the tensor- and constitutive relations are

introduced in the next section.

IV. OBJECTIVE VARIABLES FOR CONSTITUTIVE MODELS

In the following, the goal is to introduce a local, objective decomposition of the tensor

variables to formulate the constitutive model with anisotropic stress. The model is similar

to the one proposed by Hartkamp et al.36for 3D molecular fluids and is based on observations

and ideas of Alam and Luding33 concerning the change of the sign of the first normal stress

difference for high densities. Particular for such a model is that the orientations of the stress

and strain tensors are (allowed to be) variables.

A. Example: Objective velocity gradient decomposition

Here we recall basic tensor algebra using as example the velocity gradient.57 In general flow

situations, every tensor, as for example the velocity gradient, can be split into its isotropic,

deviatoric (symmetric, trace-free) and anti-symmetric contributions,

∇V = ϵ̇v1+ SD +W, (17)

where 1 is the identity tensor. The isotropic average strain rate, 3ϵ̇v := tr(∇V), accounts

for volume changes; the deviatoric strain rate,

SD :=
1

2

(
∇V + (∇V)T

)
− ϵ̇v1 , (18)
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accounts for (isochoric) shape changes; and the antisymmetric strain rate, the vorticity

tensor,

W :=
1

2

(
∇V − (∇V)T

)
, (19)

quantifies the “continuum rotation”, i.e., the vorticity of the flow.

In general, every tensor can be expressed by its components according to, e.g., a Carte-

sian coordinate system, that is chosen based on a certain flow situation or experimental

geometry. In this study, the chute flow suggests to use x, y, z in flow-, vorticity-, and

height-directions, respectively. However, every tensor can be also expressed (re-written,

without loss of information) by its invariants and eigendirections. This keeps the tensor

general, objective (coordinate frame independent) and allows one to focus on the variables

with physical meaning and the directions separately.

The velocity gradient has 9 independent components and when expressed in its (symmetric)

invariants (3 components) and eigendirections (3 components), there remains a vorticity

vector (3 components). From the symmetric part, when extracting the isotropic part, two

deviatoric invariants and the eigendirections, ϵi, remain. While there is not much choice for

the isotropic strain rate and the vorticity vector, the deviatoric strain rate tensor invariants

can now be chosen, e.g., as ϵ̇D := JS
2 = (1/

√
6)
√
(SD

1 − SD
2 )

2 + (SD
1 − SD

3 )
2 + (SD

2 − SD
3 )

2,

and JS
3 = SD

1 S
D
2 S

D
3 or, without loss of generality, as the first two eigenvalues SD

1 and

SD
2 , or any other combination thereof that describe the “shape” of the (deviatoric) tensor

as, e.g., SD
1 and ξS = SD

2 /S
D
1 , since only two are independent.58 The sorting convention

SD
1 ≤ SD

2 ≤ SD
3 is implied, which means that SD

1 < 0 is the eigenvalue that corresponds to

the eigendirection with the strongest compressive strain rate. This exercise will be carried

out without much explanation also for the other tensors below, but for stress and fabric, the

largest eigenvalue will be assigned as the first. When considering the negative strain rate,

all sorting conventions would be identical.

For chute flow in steady state, when choosing the coordinate system as defined before,

the velocity gradient takes a very simple form, since all components vanish, except γ̇ =

∂Vx/∂z ̸= 0. The invariant, objective representation is then ϵ̇D = γ̇ and ξS = 0 (therefore

SD
1 = −SD

3 = −γ̇/2, and SD
2 = 0), and the vorticity vector ω = (1/2)∇ × V = (γ̇/2)y

quantifying the vorticity in positive y-direction, which is associated to the vorticity tensor

W. The eigendirections will be discussed and given below. Note that due to the choice of

the specific chute flow geometry and the steady flow situation, one has already restricted
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the much wider family of possible deformation modes and thus cannot expect to observe all

possible rheological phenomena and behaviors that the material could provide. Other steady

deformation modes than simple shear are pure shear, volume changing flows, or mixed-flow,

where one can further distinguish between planar flows SD
2 = 0 and other, more general flow

situations18,23,44,45. Nevertheless, the chute flow geometry has advantages, as it allows us to

directly observe some non-Newtonian contributions with highly accurate statistics, as will

be detailed below.

B. Constitutive model for Newtonian flow

One can decompose the stress into an isotropic and a deviatoric part, ignoring the non-

symmetric contribution for the sake of brevity,

σ = p1+ σD , (20)

where σD is the (trace-free) deviatoric stress. According to our sign convention, a positive

pressure p indicates compression. This is opposite to the convention for strain, such that

the first eigenvalues SD
1 and σD

1 correspond to the compressive deformation direction, and

the expected response (a compressive, i.e., positive, stress increase). The deviatoric stress

for a Newtonian fluid, denoted by the subscript N , is proportional to the deviatoric strain

rate, SD, and thus satisfies

σD
N = −2ηNS

D , (21)

where ηN > 0 is the (constant) Newtonian shear viscosity.Eq. (21) requires that the devia-

toric stress tensor and the (negative) strain rate tensor are collinear, i.e., the tensors −SD

and σD have the same orientation, or eigensystem.

In the chute flow case, Vx(z) is the only non-zero component of the flow velocity and is

monotonically increasing with z, i.e., γ̇ = ∂Vx/∂z ≥ 0. This flow situation is referred to as

simple shear for which the deviatoric strain rate tensor is given by a special tensor,

SD =
ϵ̇D

2


0 0 1

0 0 0

1 0 0

 , (22)

with shear rate ϵ̇D = |γ̇|. We will use the special (22) to introduce the (general) repre-

sentation of the tensor orientations. The deviatoric strain rate tensor SD can be expressed
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in terms of its eigenvalue magnitude, ϵ̇D

2
, representing the magnitude of both the tensile

(+) and compressive (−) direction of the strain rate alike, and the orientation angle ϕϵ,

see figure 2, which the negative eigenvalue, SD
1 , has with the horizontal: we define the unit

deviator

D(ϕϵ) := R(ϕϵ) ·


1 0 0

0 0 0

0 0 -1

 ·RT(ϕϵ) =


cos2 ϕϵ − sin2 ϕϵ 0 −2 cosϕϵ sinϕϵ

0 0 0

−2 cosϕϵ sinϕϵ 0 cos2 ϕϵ − sin2 ϕϵ

 , (23)

with the eigenvectors rotated about an angle ϕϵ around the y-axis, i.e., clockwise inside the

xz-plane, the superscript T denoting the transpose, and the rotation matrix

R(ϕϵ) :=


cosϕϵ 0 sinϕϵ

0 1 0

− sinϕϵ 0 cosϕϵ

 . (24)

Now we can decompose the deviatoric strain rate tensor SD, defined in (22), as

SD = − ϵ̇D

2
D(π/4) =

ϵ̇D

2


0 0 1

0 0 0

1 0 0

 , (25)

with the shear rate ϵ̇D = |γ̇| and the orientation angle ϕϵ = π/4. Thus we expect the

deviatoric stress of a Newtonian fluid to satisfy

σD
N = −2ηNS

D = ηN ϵ̇
DD(π/4) . (26)

Deviations from Newtonian flow rheology can be due to a non-constant viscosity,46 see below,

but also due to an orientation angle of the eigensystem of the stress tensor different from

π/4 – or both together.

C. Non-Newtonian collinear flow for simple shear

For granular flows and other complex fluids (e.g., yield stress fluids), the viscosity is a

misleading concept, since it depends on the shear rate and pressure, and since the shear

stress can have finite values for ϵ̇D → 0, the viscosity diverges in this limit. Therefore, the

17



flow is better described by the macroscopic, bulk friction coefficient µ – referred to as friction

µ in the following – which satisfies

σD = −2µ
p

ϵ̇D
SD = µ pD(π/4) , (27)

where p is usually set equal to a measurable stress component, as for example p = σzz,

typically perpendicular to the flow direction. Experimentally, the confining stress is often

the only measurable stress and, as will be shown below, not equal to the isotropic p.

In other words, stress and strain rate are collinear, but the pre-factor is a function of other

variables such as ρ, p, and γ̇, see the µ(I) rheology, as discussed in the introduction section

I. Only for Newtonian fluids one recovers µN = ηN ϵ̇
D/p. Because most simple shear element

tests involve a confining stress perpendicular to a wall and the corresponding shear stress

“along” the wall, the (Cartesian) friction is commonly defined as

µ := −σxz

σzz

. (28)

This is a misleading and meaningless definition in general flow situations, except for the

special case of steady simple shear flow along a wall with normal z. However, it is under-

standable that it is used so often, since measuring the shear and normal stress on a wall is

normally the only way to experimentally access components of the stress tensor.

D. Non-Newtonian flow for simple (plane) shear

In general flow situations, see for example Refs. 23 and 44, a decomposition similar to (23)

can be formulated for a non-Newtonian stress, where the rotation matrices are replaced by

more general transformation matrices between the eigensystems of stress, strain, and the

Cartesian laboratory frame. This case will be published elsewhere, and we return to the

simple shear in the chute flow geometry which allows us to reduce the three directions to a

single variable.

For a symmetric stress, and where the σxy, σyz components are close to zero in steady

state, the orientation of the deviatoric stress tensor is determined solely by measuring the

orientation ϕσ of the largest principal stress in the xz-plane. Then the deviatoric stress takes
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FIG. 2. Sketch of the eigendirections ni of the deviatoric stress tensor, the eigendirections ϵi

of the strain rate tensor, and the angles ϕσ and ϕϵ between the x-axis and the largest (smallest)

principal direction of the deviatoric stress (deviatoric strain rate) tensor.

Under the assumptions of section IVD, n2 = y, while n1, and n3 are orthogonal directions in the

xz-plane. Thus, the difference between the principal orientation of the negative deviatoric strain

rate tensor and the positive deviatoric stress tensor can be quantified by the deviation ∆ϕ = ϕσ−ϕϵ.

the form36

σD = R(ϕσ) ·


λ1 0 0

0 λ2 0

0 0 λ3

 ·RT(ϕσ), (29)

where λ3 = −λ1 − λ2. A sketch of this decomposition is presented in figure 2. Only for the

special case of a Newtonian fluid, one would find λ1 = ηN ϵ̇
D, λ2 = 0 and ϕσ,N = π/4, so

that (29) reduces to (21).

The magnitude of friction, deviatoric stress relative to pressure, can be quantified using the

tensor-invariant

s⋆D :=
1√
6p

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2. (30a)

which is the scaled deviatoric norm (a measure of magnitude) of the deviatoric stress tensor.

In the collinear (plane strain rate and plane stress) case, one can show that µ = s⋆D.

Instead of using the third invariant, we further measure how much each principal direction

contributes to the deviatoric stress by determining the ratio of the first two eigenvalues,

Λ12 := λ2/λ1. (30b)

Finally, in order to obtain an objective, frame-independent constitutive model, the orienta-
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tion (angles) should only appear as differences (relative transformations),

∆ϕ := ϕσ − ϕϵ, (30c)

The three measures (30) are sufficient to quantify the anisotropy of the stress tensor. The

deviatoric stress can now be written as

σD = λ1R(ϕσ) ·




1 0 0

0 0 0

0 0 −1

+ Λ12


0 0 0

0 1 0

0 0 −1


 ·RT(ϕσ)

=
s⋆D p√

1 + Λ12 + Λ2
12


−(1 + Λ12

2
) sin(2∆ϕ)− Λ12

2
0 −(1 + Λ12

2
) cos(2∆ϕ)

0 Λ12 0

−(1 + Λ12

2
) cos(2∆ϕ) 0 −Λ12

2
+ (1 + Λ12

2
) sin(2∆ϕ)

 ,

(31)

where we used cos(2ϕσ) = − sin(2∆ϕ) and sin(2ϕσ) = cos(2∆ϕ), since ϕϵ = π/4 in our

system. The seemingly more complicated form in the second line of (31) can be advan-

tageous,and will be used in the following section. It displays the prefactor s∗Dp (similar

to µ p in (27)) and a normalized unit-deviator, decomposed into a rotated, planar and a

rotation-invariant axial component (the latter is represented by the diagonal matrix with

diagonal values proportional to (−Λ12/2,Λ12,−Λ12/2)). Given the identical expressions for

σD, in Eqs. (29) and (31), where only different variables are used, it is now straightforward

to express, for example, the normal stress differences, the Cartesian stress components,59 or

the Cartesian friction, µ, as functions of the (invariant) pressure and the invariants of the

deviatoric stress tensor (30).

V. SIMULATION RESULTS

To obtain detailed information about steady flows, we use the expressions defined in sec-

tion III. The system is equilibrated for T = 2000 time units and then averaged over ∆T =

500, with snapshots taken every ∆ta = tc/2. Since the flows are uniform in x and y, we

further average analytically over the chute length ∆x = 20 and width ∆y = 10. The profile

of a variable χ is thus defined as

⟨χ⟩(z) = 1

(∆T/∆ta)∆x∆y

(∆T/∆ta)−1∑
i=0

∫ ∆x

0

∫ ∆y

0

χ(T + i∆ta, x, y, z) dy dx, (32)
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FIG. 3. Left: Volume fraction as a function of height for w = 0.05 and w = 1. Right: Volume

fraction at selected heights as a function of the coarse-graining width w. Circles and crosses in

both figures denote the density at the selected heights for w = 0.05 and w = 1, respectively. Data

taken for N = 6000, θ = 28◦.

with χ any macroscopic field. The macroscopic fields are evaluated for all height-values z

between base and surface, with a step size of ∆z = 0.05. In the following we only show

averaged quantities and therefore omit the ⟨⟩-brackets.

A. Dependence on the coarse-graining width

The resulting height profiles depend strongly on the coarse-graining width w, which needs to

be carefully selected. According to Goldenberg et al.,47 each well-defined macroscopic field

should yield a plateau of w-values, where the field values (ideally) do not depend on the

coarse-graining width.

Here, we show the existence of two plateaus in the right panel of figure 3, where the density

at selected heights is plotted for a representative system with θ = 28◦ and N = 6000. A first

plateau exists, for all heights, in the range 0.0025 ≤ w ≤ 0.1. For w < 0.0025, statistical

fluctuations are strong and longer time-averaging or ensemble-averaging is required to obtain

useful data. All other macroscopic fields defined in section III show a similar plateau. We

conclude that there is a length scale in the system of much less than a particle diameter, d,

where continuum fields for all variables can be defined. On this length scale, layering of the

flow can be observed when approaching the base boundary.

Further, as reported earlier in 2D,48 a second, narrower plateau can be observed for 0.6 ≤

w ≤ 1 in the bulk of the flow, further than 2w ≈ 2d away from the wall. To illustrate the

21



z

σ
k
xx
|w=1

σ
k
xx
|w=0.05

σ
k′
xx|w=1

σ
k⋆
xx
|w=1

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w

σ
k x
x

1

2

10−2 10−1 100

10−1

100

101

w

σ
k
∗

x
x

10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

sub-particle sc.

particle scale

z = 2.56

z = 3.16

z = 3.93

z = 15.65

z = 28.99

w = 0.05

w = 1

FIG. 4. Left: Kinetic stress component σk
xx as a function of height for w = 0.05 and w = 1, as

well as the reduced kinetic stress components σk′
xx and σk⋆

xx for w = 1. Kinetic stress component σk
xx

(middle) and scale-corrected kinetic stress component σk⋆
xx (right) at selected heights as a function

of the coarse-graining width w. Circles and crosses denote the values at the selected heights for

w = 0.05 and w = 1, respectively.

differences, we plot the density as a function of height z for w = 0.05 and w = 1 in the left

panel of figure 3. When averaging on the particle length scale, oscillations due to layering

are smoothed out, and we observe only the large gradients. While the particle-scale density

is nearly constant in the bulk, it decays slightly near the base, where the density oscillations

are strongest, and decays strongly near the surface, where the pressure approaches zero. The

momentum density, velocity, contact stress and fabric components show the same qualitative

behavior.

However, the normal kinetic stress in flow direction, σk
xx, and therefore the granular tem-

perature, Tg, are strongly scale dependent for w > 0.1, with values proportional to w2 in

the bulk, as can be seen in figure 4. Glasser and Goldhirsch49 showed that the main scale

dependence of the kinetic stress tensor stems from the fact that the fluctuating velocity v′
i(t)

is defined in (11) with respect to the coarse-grained velocity V(r(t), t) at position r, and

not w.r.t. V(ri(t), t), at the position of the particle. The latter reference is typically used

in kinetic theory, where the fluctuating velocity is defined as

v⋆
i (t) := vi(t)−V(ri(t), t) . (33)

Kinetic stress components (with contributions from the flow-direction) like σk
xx can be split

into a nearly scale-independent part, σk∗
xx =

∑N
i=1mv⋆ixv

⋆
ixW(r − ri), and a scale-dependent

part. For large enough samples and in three dimensions, for the coarse graining function
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used here, the scale-dependent part reduces to ργ̇2w2

3
, which allows us to define a reduced

kinetic stress component

σk′
xx =

N∑
i=1

mv′ixv
′
ixW(r− ri)− ργ̇2w

2

3
, (34)

where the dominant scale-dependent part has been subtracted. Eq. (34) has the advantage

that it can be used to correct the stress a-posteriori, whereas (33) requires a preparation step

to obtain V. We confirmed that σk′
xx is indeed scale independent on both the sub-particle

and particle length scale, see figure 4, and approaches σk⋆
xx. The remaining scale dependence

for large w is due to the large macroscopic gradients at the base and the surface. While σk′
xx

does not represent the full kinetic stress component as derived by Goldhirsch,41 it can be

viewed as the scale independent kinetic stress for the particle scale coarse graining. In the

following, the reduced kinetic stress is used in all stress calculations for w = 1.

As final remark, on the larger coarse-graining length-scale also the granular temperature has

to be corrected as T ′
g = (σk′

xx + σk
yy + σk

zz)/(3ρ) in (14).

The existence of two plateaus implies two distinct length scales (in this type of flow) and

different continuum models should be developed to describe each. Since we are interested

in the full details of coarse-grained quantities, we choose w = 0.05 as our default coarse-

graining width. For coarser continuum modeling, however, the second length scale, w = 1,

is more appropriate: the details of the layering at the base are not likely to be required to be

captured in large-scale continuum models, such as those used to describe geophysical flows.

As an example for the layering, in figure 5, we study the oscillations in the volume fraction

by subtracting the volume fractions ν obtained for the two length scales, at w = 0.05 and

w = 1, and normalizing them by the coarser quantity. These can later be compared to the

oscillations found in other macroscopic fields, e.g., stress. The variations due to layering are

symmetric about the coarse mean, oscillating periodically, and decaying exponentially with

distance from the base, and can be fitted as

ν̃ = α cos(2π(z − zw)/L) exp(−(z − zw)/z0), (35)

with period L = 0.907, first peak within flow zw = 1.6, amplitude at first peak α = 0.106,

and the 1/e-decay distance z0 = 2.58. These values are similar for all steady flow simulations;

only the decay distance increases for slower flows (I ≤ 0.2). The period of slightly less than
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FIG. 5. Dots (blue online) denote sub-particle-scale variations of the volume fraction, ν̃ =

ν|w=0.05−ν|w=1

ν|w=1
, as a function of height. The solid line (red online) shows the fit to (35), for data

taken from the simulation with N = 6000, θ = 28◦.

a particle diameter indicates that the particle flow is layered near the base with slightly

interlocked layers, even though there is a quite rough wall with roughness of the same order

as the layer-distance. Similar variations were also found for micro-fluid flow through a

confined nano-channel,50 but further details go beyond the scope of this study.

B. Continuum conservation equations (coarse grained)

In the steady chute flow situation – not in general – there are some consequences of the

macroscopic momentum conservation equations, that can be used to check and to better

understand the following results.

The horizontal stress components, σαz, in dense granular flows are determined by the mo-

mentum equations; assuming that the stress is zero at the free surface, and that the flow is

steady and uniform, the momentum balance (9) reduces to

σαz(z) =

∫ ∞

z

[ρ(z′)gα + tα(z
′)] dz′, α ∈ {x, y, z} , (36)

where the boundary interaction force density t, defined in (12), is zero everywhere except

within the cutoff distance c = 2w from the basal surface.9 Eq. (36) is called the lithostatic

stress relation, since it determines (three) stress components in terms of the density ρ. Since

the density is nearly constant, the stress components σxz and σzz follow a linear trend, see

figure 6, except for small oscillations due to the considerable density oscillations near the

base. The oscillations in the remaining stress components, however, are distinctly larger. For
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FIG. 6. Total stress components σαβ (left) for w = 0.05 and the sub-particle-scale variations in

the stress (right) σ̃ = σ|w=0.05−σ|w=1

σ|w=1
, using the reduced kinetic stress, as defined in (34). Data are

taken from a simulation with N = 6000 and θ = 28◦. Stress components not shown are nearly zero;

The normal downward stress, σzz, increases towards the base, approaching Nmg cos(θ)/(lxly), the

pressure due to the weight of the flow. In the base regime, the stress decreases to zero, compensated

by the boundary interaction force, tα. Due to the roughness of the base, fluid density and stress

do not drop instantly, but over the interval −1 < z < 1, see Ref. 9 for details.

example, oscillations in the reduced stress σ̃xx can be fitted (not shown) using equation (35),

with period L = 0.900, 1/e-decay distance z0 = 2.28, first peak zw = 1.63 and amplitude at

first peak α = 0.0791. Thus, they are in phase with the density oscillations, suggesting that

the stress oscillations are caused by the oscillating density.

Due to the momentum balance (36), both the bulk friction, µ = −σxz/σzz, and the friction

due to the interactions with the base, −tx/tz, are equal to tan θ and thus constant for all

heights. This is confirmed by our data (not shown).

Further, in all simulations, the stress tensor was found to be nearly symmetric for w = 1 (data

not shown). In this case, the asymmetric part contributes less than 0.1% to the deviatoric

stress with maxima both near the base and the top. For w = 0.05, the asymmetric stress

is proportional to the density fluctuations and can be larger, but studying this goes beyond

the focus of this paper.

Finally, if stress would be isotropic (and symmetric), the normal stress components would

be equal. However, the normal stress in flow direction, σxx, is slightly larger than σzz, while

the normal stress in vorticity direction, σyy, is smaller, giving rise to non-zero first and

second normal stress differences or non-unity stress ratios, as discussed below. In summary,
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FIG. 7. Shear rate (left) and inertial number (right) plotted as a function of height, for w = 1,

from the simulation with θ = 28◦ and N = 6000, In the right figure, we distinguish between bulk

data (black markers) and the non-bulk data (gray markers) near the boundaries. The dashed

lines show the isotropic Bagnold shear rate profile (37) for constant volume fraction ν ≈ 0.53 (left

panel) and the constant inertial number Ī = I(28◦) = 0.354 (right panel) as predicted by the µ(I)

rheology, see (41) below. The solid line shows the Bagnold shear rate profile (37) which takes the

anisotropy into account.

all non-zero stresses that are not governed by the momentum balance (36) show oscillations

near the base. These stress oscillations are in phase with the density oscillations shown in

figure 5 and also their period is equal, only the decay distance is slightly smaller, see right

panel in figure 6.

C. Shear rate and inertial number for constant density

Next, we study the shear rate and the inertial number in the chute flow situation, since their

behavior is the basis of the µ(I)-rheology, as introduced in section I, and it is at the core

of height-averaged macroscopic theories.37 We define the bulk of the flow to be the region

where the µ(I) rheology is applicable, i.e., where the only control parameter is I, which

allows two basic simplifications: In the bulk region (typically ∼ 80% of the flow if the chute

angle is 22◦ or larger), the density is almost constant and, as definition, the inertial number

I is within 10% deviation from its (constant) bulk value, see figure 7 (right).

Just assuming a constant density ρ̄ allows the very simple integration of the steady state

momentum balance (36) and yields a linear stress profile σzz = ρ̄g cos(θ)(hc − z) = σ0
zz(1−

z/hc) for z ∈ (0, hc), where σ0
zz = σzz(z = 0) = Nmg cos(θ)/(lxly) is the normal stress
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(boundary condition) at the base and hc = Nm/(lxlyρ̄) is the height of the flow under the

constant density assumption.

Substituting this into the definition of the inertial number, (1), requires a relation between

pressure and confining stress βp = σzz/p, since in general these stresses are not identical due

to anisotropy. Further assuming a constant inertial number Ī, we obtain the Bagnold shear

rate profile

γ̇(z) = Ī

√
σ0
zz

βp

(1− z/hc)

ρpd2
, (37)

which, together with the no-slip condition (Vx(0) = 0), yields the Bagnold velocity profile.51

Now, using the (wrong) isotropy assumption (βp = 1) yields the dashed line in Fig. 7, while

the proper anisotropy relation (βp = 1.05 from (40a) below), yields the solid line. Even

though the anisotropy is small it leads to a visible difference in the shear rate profiles.

From the coarse grained data, we estimated the shear rate using centered finite differences,

∂Vx

∂z
(z) ≈ Vx(z +∆z)− Vx(z −∆z)

2∆z
, (38)

with step size ∆z = 0.05. The shear rate predicted in (37) and plotted against the measured

shear rate for the reference case in figure 7, shows that both predictions match the bulk

behavior pretty well, but differ significantly near both base and surface: At the base, the

shear rate, and thus the inertial number is much lower than predicted. At the free surface,

the shear rate decreases but remains finite. Therefore, the inertial number becomes very

large at the surface, where the confining stress vanishes.

In summary, the isotropic, collinear µ(I)-rheology predicts the shear rate profile quite well

given the crude assumptions about constant density and inertial number. For a better

prediction, see Ref. 2, where kinetic theory is used to involve variable density, I, and non-

linear pressure. The theory presented in the following is about the non-isotropic and non-

collinear stress contributions and not so much about a slightly improved shear rate profile.

D. Kinetic stress and temperature

Next, we decompose the stress tensor into its kinetic and contact parts. The kinetic stress

components are shown in figure 8. Even for the simulations with high inertial number, as

the one shown here with I ≈ 0.25, the kinetic stresses are much smaller than the contact

stresses in the bulk, but significantly contribute to the total stress very close to the surface.

27



z

σ
k α
β

σk
xx

σk
yy

σk
zz

−σk
xz

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

I

tr
(σ

k
)/
tr
(σ

)

ẑ

1

2

10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10−3

10−2

10−1

FIG. 8. Left: Kinetic stress components σk
αβ for N = 6000, θ = 28◦, w = 0.05. Components not

shown are nearly zero. Right: Ratio of total kinetic pressure to total pressure, tr(σk)
tr(σ) , as a function

of inertial number for all data 4000 ≤ N ≤ 8000, 20◦ ≤ θ ≤ 30◦, w = 0.05. Shade/color indicates

the relative height, ẑ = z/h, from darkest gray (blue online) at the bottom (ẑ = 0) to light gray

(green/yellow online) to mid-gray (red online) at the surface (ẑ = 1). For the height definition, see

Weinhart et al.37

Even for the largest I ≈ 0.6, the kinetic stress is of the order of 10% in the bulk, indicating

that its trace, the granular temperature, also has a minor effect. For larger shear rates,

lower densities and pressures, the flow enters the collisional regime where kinetic theory is

expected to hold, however, studying this goes beyond the scope of this paper.

VI. CALIBRATING THE CONSTITUTIVE MODEL

In this section, using the example of steady shear flow, we study the objective descriptors

of the stress tensor, as defined in section IV. After splitting off the isotropic part p, the

deviatoric stress is expressed in terms of the norm (deviatoric stress ratio) s⋆D, the eigenvalue

ratio Λ12, and the orientation of the largest principal component, ϕσ. We also examine the

contact and kinetic stress contributions σc, σk, as well as the fabric F, for which we use

superscripts c, k, F to denote their descriptors.

A. Stress tensor orientation and objective descriptors

From eigenvalue analysis of the deviatoric stress, we obtain its principal directions, or (nor-

malized) eigenvectors, ni, with the eigenvalues λi. The set of eigenvectors allows us to
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FIG. 9. The deviatoric stress decomposed into principal directions ni, with corresponding eigenval-

ues λi (right) and αxy, αyz, αxz (left), quantifying the orientation of the eigenvector n1 as described

in the main text. Data are taken from the simulation with N = 6000, θ = 28◦, and coarse graining

width w = 0.05.

compare the orientation of the stress with the orientation of the strain rate tensor. We

confirm the assumptions made in section IVD, that the y-components of n1 and n3 nearly

vanish – except for statistical fluctuations – for strain rate as well as for stress, while n2

(almost) equals (0, 1, 0)T . Thus, the angle ϕσ between the x-axis and the main principal

direction, n1, is the only measurable deviation from a collinear stress-strain relationship.

In figure 9, the orientation of n1 is plotted using the angles

αab := − tan−1

(
n1b

n1a

)
, a, b ∈ {x, y, z} , (39)

which measure the clockwise rotation angle (around the b× a axis) in the ab-plane between

the a-axis and the projection of n1 into the ab-plane. As expected, −αxy and αzy nearly

vanish. Therefore, the orientation angle of the stress tensor, ϕσ = αxz, is slightly below

ϕϵ = 45◦, indicating that the stress tensor is rotated counter-clockwise (around the negative

y-axis) w.r.t. the negative strain rate tensor. It is nearly independent of z in the bulk, but

oscillates strongly near the base and the difference |∆ϕ| increases in magnitude closer to the

surface.

In the right plot of figure 9, the eigenvalues of the deviatoric stress tensor are plotted. The

second eigenvalue is smallest and negative for all heights and all eigenvalues decrease nearly

linearly to zero towards the surface, while their ratios remain nearly constant for all heights,

as will be detailed below.

We continue the study of the stress-strain orientation by plotting the angular deviation, ∆ϕ,
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FIG. 10. The four objective variables that describe the stress tensor, one for isotropic pressure

and three for the deviatoric stress, are plotted against the inertial number I. Large markers denote

bulk values, while small dots denote base and surface values. Shade/color indicates relative height

ẑ (see figure 8). Lines indicate fits to the bulk data as specified in the insets. Top left: Angular

deviation of the deviatoric stress from collinearity with the strain rate tensor, ∆ϕ, with linear fit

(40b). Bottom left: Magnitude of the deviatoric stress ratio, s⋆D, with the line a fit to the bulk data

according to equation (40d). Top right: Ratio of eigenvalues Λ12 with linear fit (40c). Bottom right:

Ratio of pressure p and confining stress σzz, with constant fit. Data are from steady simulations

in the parameter range 4000 ≤ N ≤ 8000, 20◦ ≤ θ ≤ 28◦, with coarse graining width w = 1, using

the reduced kinetic stress (34).
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in figure 10 for all steady simulations. The negative deviation in the bulk increases almost

linearly with the inertial number. While the mean bulk deviations are always negative,

they oscillate and can become locally positive at low inertial numbers. The linear fit of the

deviation angle as a function of inertial number in figure 11 shows that there is nearly no

offset; thus, I and ϕσ − ϕϵ are nearly proportional. However, our data are in a range of

0.02 ≤ I ≤ 1, so that the linear fit should not be extrapolated to either of the large or small

I limits without support from more data. Note that a small negative angular deviation

corresponds to a positive first (scaled) normal stress difference, N1 = (σxx − σzz)/p, as can

be seen from (31). This is in agreement with previous observations, as was reported in the

introduction.

The remaining plots in figure 10 show the deviatoric stress ratio s⋆D, the eigenvalue ratio Λ12,

and the ratio σzz/p, all plotted as functions of the inertial number I. For each individual

simulation with fixed particle number and inclination, in the bulk, the inertial number is

(almost) constant and also the plotted values vary only slightly. Deviations from this data-

collapse are evident close to the base and the free surface, indicating the limits of the scaling

relations. The ratio Λ12 is negative throughout, and increases in magnitude with the inertial

number, but is finite as I → 0. It is fitted linearly; however, the data does not allow us to

conclude about a possible divergence of Λ12 for I → ∞. The ratio σzz/p is independent of the

inertial number, with the same reservations outside the range of our data. The fits obtained

for w = 1 closely match the fits for w = 0.05, where the latter display large oscillations close

to the base due to the layering (not shown).

Further simulations with a smaller microscopic friction coefficient, µc = 0.125, and with no

microscopic friction, µc = 0, have been analyzed to study the dependence of the angular

deviation, ∆ϕ, on the microscopic friction. While the magnitude of ∆ϕ decreases with

decreasing micro-friction, ∆ϕ remains negative and proportional to I, even for frictionless

particles (data not shown) – in the range of data available for steady chute flow.

B. Objective variables as function of inertial number I

The fits in figure 10 can now be used to formulate a constitutive model that allows to recon-

struct (predict) the anisotropic and non-collinear stress tensor for a given inertial number:

The confining stress σzz is determined by (36) and depends on the density, which is a func-
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tion of the inertial number37 that depends on the chute angle. The pressure shows an almost

constant ratio with the confining stress, and the deviatoric stress is given by (31), with:

p = σzz/βp (40a)

∆ϕ(I) = ∆ϕ0
σ − βσ

ϕI, (40b)

Λ12(I) = Λ0
12 − βσ

12I, (40c)

s⋆D(I) = tan θ⋆1 + (tan θ⋆2 − tan θ⋆1)
I

I⋆0 + I
, (40d)

with coefficients βp = 1.05, βσ
ϕ = 4.07, ∆ϕ0

σ = 0.15, βσ
12 = 0.10, Λ0

12 = −0.20. θ∗1 =

20.72 ± 0.01◦, θ∗2 = 41.48 ± 0.06◦, and I∗0 = 0.568 ± 0.004, as shown in figure 10. Note

that all coefficients given in (40) could be functions of the flow variables (e.g., ρ, p, Tg, F);

this, however, has not been explored in detail. The first three variables are related in the

framework of kinetic theory,2 while the fabric relates micro-structure to stress, shear rate,

and density via (shear) dilatancy and structural anisotropy.7,43,44,52 The deviatoric fabric –

even though correlated to the stress and behaving similarly with respect to anisotropy and

non-collinearity with the strain rate – is evolving independent of stress and thus requires a

constitutive model of its own, which goes beyond the scope of this study.

Since the objective friction s⋆D shows a very similar behavior as the Cartesian friction µ =

−σxz

σzz
, we used the same fit-function for s⋆D as applied to the friction µ in Ref. 12. This

similarity is not surprising as the µ(I) rheology is a special case of the constitutive model

(40) for ∆ϕ = Λ12 = 0 and βp = 1. Under these assumptions, µ = s⋆D can be fitted well by

µiso(I) = tan θ1 + (tan θ2 − tan θ1)
I

I0 + I
, (41)

with fit parameters θ1 = 19.67± 0.01◦, θ2 = 39.89± 0.06◦, and I0 = 0.617± 0.004, as shown

in figure 11.

Note that the s⋆D norm, which represents the objective deviatoric stress to pressure ratio,

similar to a von Mises flow rule, is also a generalized measure of the internal bulk friction in

anisotropic flows. Alternative flow rules, like the Lade surface, have been shown to better

reproduce the stress response to different strain rate tensors as used here, but since those

data are not presented here, we refer from discussing this further for the sake of brevity and

rather refer to the recent work of C. Thornton et al.5
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FIG. 11. Friction µ = −σxz/σzz (left panel) and eigenvalues of the deviatoric stress λi scaled by the

pressure p (right panel), plotted as function of the inertial number I. Data from various simulations

with 4000 ≤ N ≤ 8000, 20◦ ≤ θ ≤ 28◦, and w = 1, using the reduced kinetic stress (34). The

solid lines in each plot are the predictions for µ and λi/p, (42), from the (anisotropic) constitutive

equations, (40). The dotted line (blue online) in the left panel is the prediction according to the

(isotropic) µ(I) rheology, (41), the dashed line (green online) is the objective friction s⋆D, see (40d).

C. Consistency check of the model

Next, we confirm that the constitutive model for deviatoric stress is well-posed and consis-

tent. Therefore, the friction µ and the eigenvalues λi of the deviatoric stress are plotted and

compared with the predictions from the constitutive model in figure 11.

In particular, the constitutive model (31) predicts that the λi depend only on the inertial

number I and linearly on the pressure p (note that λi is independent of ∆ϕ(I)),

λ1 =
s⋆D(I)√

1 + Λ12(I) + Λ2
12(I)

p , λ2 = Λ12(I)λ1, λ3 = (−1− Λ12(I))λ1 , (42a)

as clearly verified in figure 11 for all bulk data.

More interestingly, see (31), the friction factor can be expressed as:

µ(I) = tan(θ) = − s⋆D(Λ12 + 2) cos(2∆ϕ)

s⋆DΛ12 − s⋆D(Λ12 + 2) sin(2∆ϕ)− 2
√

1 + Λ12 + Λ2
12

, (42b)

which yields for small ∆ϕ → 0 and I → 0

tan(θ1) ≈ − (1 + Λ0
12/2)

Λ0
12/2−

√
1 + Λ0

12 + (Λ0
12)

2/ tan θ∗1
, (43)
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and thus relates the coefficients of the isotropic and anisotropic constitutive equations, (40)

and (41). The friction predicted by inserting the constitutive equations (40) into (42b)

agrees very well with the plotted data and also with the direct fit to µ, Eq. (41), for the

range of I < 0.5, see figure 11. Ignoring the non-collinearity ∆ϕ leads to deviations already

for I ≥ 0.2 and thus is not desirable for most of the flow conditions studied.

Further, the new constitutive stress model allows for the deviatoric stress tensor, Eq. (31),

to be anisotropic and the normal stress ratios, like K = σxx/σzz, can be expressed in terms

of the inertial number, again inserting equations (40):

K(I) = 1 + 2 tan(2∆ϕ)µ(I) (44)

which compares well with the bulk data (not shown). Isotropy in the shear plane, K = 1,

follows directly for the collinear case ∆ϕ = 0. The (anisotropic) constitutive model (40)

yields K = 0.996 for I = 0. This result is inconsistent with the anisotropic Savage-Hutter

model,30 as presented in Iverson and Denlinger,53. They defined an earth pressure coefficient

as K = (1 + sin2 ϕint)/(1− sin2 ϕint), with the internal bulk friction angle ϕint = tan−1(µ).

Our constitutive model is valid in the range of steady state flow angles θ1 < θ < θ2; for

I ≈ 0.35, as shown in most previous figures as example case, θ = 28◦, it predicts K ≈ 1.05

and Ky = σyy/σzz ≈ 0.81, clearly different from the isotropic case. The normal stress

differences are not discussed here for the sake of brevity, but can be easily extracted from

the constitutive model.

D. Objective descriptors of other tensors

Concerning the isotropic components of strain rate and fabric, we just note that the isotropic

strain rate vanishes due to the steady flow situation, and the isotropic stress and its relation

to the isotropic (trace of) fabric, see (16), were discussed before for (quasi-)static cases43,44

and dynamic, collisional/inertial flows2 and therefore will not be detailed further.

Finally, we compare the decomposition of the symmetric traceless part of the stress tensor in

its objective descriptors with the same objective variables of the contact stress, the kinetic

stress and the fabric tensor in figure 12. As the contact stress is the dominant component

of the stress tensor, even close to the surface, the eigenvalues and principal directions of σc

and σ are nearly equal, while σk shows larger ∆ϕ and a sign change towards the surface.
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FIG. 12. Decomposition of the symmetric traceless parts of the total, contact and kinetic stresses

and of the fabric tensor, into magnitude s⋆D (left), angular deviation ∆ϕ (center) and eigenvalue

ratio Λ12 (right). Data are taken for N = 6000, θ = 28◦, w = 0.05.

The decomposition of the fabric tensor F and total stress σ are also similar, which is not

surprising since these tensors differ only by the weighting of the terms in the summation

used to calculate them. The decomposition of F is nearly constant over the height (and

therefore can be described in terms of the inertial number), but the deviation ∆ϕ is stronger

for the fabric than for the stress. The magnitude of anisotropy in F is smaller than in σ; the

angular deviation, however, is stronger. The consequences of the differences between stress

and fabric will be discussed in more detail elsewhere.

The kinetic stress is large at the base and decreases towards the surface, see figure 8. It

does, however, not vanish at the surface, unlike the contact stress, and therefore has a larger

contribution to the total stress near the surface, in the dilute collisional regime.2 For all

steady cases, the anisotropy in the kinetic stress part alone is smaller than the anisotropy

of the contact stress, but is still significant, and even strongly increases towards the surface.

The angular deviation ∆ϕ is stronger for the kinetic than for the contact stress: while it

remains nearly constant in the bulk, ∆ϕ for the kinetic stress changes sign below the surface

and takes much larger negative values towards the base, for all steady flows. These effects

occur in a large part of the flow and thus are more than only boundary effects, different

from the change in behavior of the contact stress very close to the boundaries.

The data for Λ12 show the correlation between the tensor shapes with respect to their non-

planar component. The axial (compressive perpendicular to the shear-plane) component

of the structural anisotropy is weakest, for the stress it is larger, and for the kinetic stress

almost −1/2, which is the fully axial limit. In that respect, the kinetic stress is isotropic in
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panel represent fits to all bulk data and the dashed line in the center panel is the fit to all bulk

data at inclination θ = 28◦. Arrows indicate the direction in which I is increasing.

the shear-plane, i.e., gas/fluid-like, while the static/contact stress and the structure tensor

are behaving similar to each other: their major contribution is responding to the planar

strain field while a smaller, second contribution is axial, like the kinetic stress. Since we

believe that the full understanding of the non-Newtonian flow behavior can be achieved only

by considering all tensor variables together, we end this subsection by including a few data

on the correlations between the structure and stress tensor:

The isotropic quantities, p and tr(F), for a given chute angle, scale independent of the filling

height, while smaller chute angles correspond to slower flow with larger densities and thus

larger tr(F) at comparable stress levels (data not shown).

The anisotropic fabric measures are compared to the corresponding stress measures in Fig.

13:

(1) The non-collinearity, i.e., the angular deviation between fabric/stress and strain rate

displays a similar proportionality with I for both tensors. This is not astonishing, since

the vorticity (ω = γ̇/2 and thus proportional to I, in the plane strain chute flow case) is

responsible for different orientations. However, the fabric displays an about 50% larger lag-

angle than the stress, indicating a slower relaxation of the structure orientation than of the

stress.

(2) The tensor-shape ΛF
12 does not scale with the stress shape factor; different chute angles

correspond to similar slopes (1.75 − 1.56) with different offsets (0.26 − 0.19) when fitted
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separately (θ ∈ [28◦; 22◦]). The dash-dotted line shows the fit to the data with θ = 28◦;

when extrapolated (outside the range of our data) to much larger I, both tensors approach

their limits Λ12 ≈ ΛF
12 ≈ −0.5, namely purely axial shape, indicating that the flow response

becomes more and more isotropic (tensile) in the shear plane while harvesting a compressive

out-of-shear-plane component. The fact that the fabric-shape factor is smaller than the

stress-shape factor indicates that the structure is more closely following the planar strain-

rate, i.e., the axial out-of-shear-plane compressive contribution is smaller for the fabric.

(3) The tensor “anisotropy” factors, i.e., the ratios of second and first invariants for each

tensor, display an almost linear scaling (as indicated by the linear fit (solid line) to all our

bulk data). However, in contrast to the stress anisotropy that is almost constant for given

θ, the fabric anisotropy systematically increases by about 20-25% with increasing height

z, i.e., with decreasing pressure. This is consistent with observations made in quasi-static

pure shear situations for higher densities.44 Also the fact that the linear fit shows a smaller

slope and a negative offset is consistent with those data, as it indicates that fabric becomes

isotropic faster than stress, and even could reach zero for finite stress-anisotropy (however,

this prediction is again a crude extrapolation outside the range of our data and thus should

be treated with care).

In summary, the fabric tensor is a complementary quantity to the stress, with different

quantitative and qualitative behavior, resembling the “memory” of the system to previous

deformation. Even for the simple steady chute flows considered here, the fabric tensor

behaves different from the stress. This indicates that it is the missing link between stress

and strain – and thus a missing ingredient for granular rheology – and that the fabric

needs objective evolution equations by its own (which is work in progress, based on recent

research5,7,8,17,44,52).

VII. CONCLUSION

In this paper, discrete particle simulations of dry, frictional, granular flows down a chute,

inclined by an angle θ, were studied in the steady state flow regime. The goal was to

determine the influence of the local stress anisotropy on the flow rheology and to propose

an objective continuum description of the local flow situation that involves all invariant

variables – some of which are often neglected.
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First, macroscopic fields were obtained by coarse-graining and time-averaging the micro-

scopic data in Sec. VA. Two coarse-graining length scale regimes were identified, for which

the bulk macroscopic fields are scale independent, see figure 3. On the shorter, sub-particle

length scale, 0.0025d ≤ w ≤ 0.1d, oscillations are visible in the density and stress fields due

to the layering of the particles close to the rough base. The oscillations of the macroscopic

fields, having a period of just below one particle diameter, are in phase with each other, and

decay away from the boundary, see figures 5 and 6. On the longer, particle length scale,

0.6d ≤ w ≤ d, smooth macroscopic fields are evidenced. The kinetic stress component in

flow direction σk
xx and the granular temperature Tg were found to be scale-dependent on

this scale, see figure 4. However, the scale-dependence could be clearly quantified as a func-

tion of the density and strain rate, which allowed us to obtain a smooth, scale-independent

definition of the stress tensor and the granular temperature after removal/subtraction of

the coarse-scale dependent term. Note that the second, particle-scale plateau is not defined

near the free surface, at the base of the flow, or in general in the presence of large gradients.

In these regions the fields vary on a length scale smaller than or comparable to the used

coarse-graining width (due to the large gradients in, e.g., density) so that these results have

to be treated with special care.

Next, we considered the three objectives outlined in section ID. The non-Newtonian stress

tensor was decomposed into four objective, frame-invariant variables: i) the objective friction

coefficient, s⋆D, very similar to the classical bulk friction, ii) the anisotropy distribution

between the principal axes, Λ12, that describes the “shape” of the stress tensor, iii) the ratio

between pressure p and confining stress, σzz (in this flow situation), and iv) the difference

in orientation of the stress tensor w.r.t. the negative strain rate tensor in the shear plane,

quantified by one angle ∆ϕ.

Each variable was determined in terms of the inertial number, I (see figure 10), the ratio

of the timescale of deformation, τγ = γ̇−1, and the inertial timescale, τp = d
√
ρp/p (as

previously12 used to describe the bulk flow rheology).

The classical Cartesian bulk friction µ = −σxz/σzz is well defined and objective only in

cases where a plane shear strain rate defines a flow as well as a gradient direction. In the

present case, the momentum balance (36) yields µ = tan θ for steady flows. In more general

situations, especially in non-planar flows, it is a misleading concept and has to be handled

with care. Instead, the ratio of deviatoric norm (second invariant) and pressure is always
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objective and – in the present case of chute flow – behaves similar as the classical friction,

s⋆D ∝ µ, but displays somewhat larger values.

The angular deviation in the shear plane, ∆ϕ, was found to be quite small but scales linearly,

nearly proportional, with I. In particular, an earlier reported change of sign of ∆ϕ is possible

for very small I, but our steady state chute flow provides only intermediate values of I; faster

flow accelerates and slower flow arrests.

The “shape” factor Λ12 is approximately linear in I with a constant offset, i.e., the stress

tensor always has a different shape from the strain rate tensor. Remarkably, Λ12(I → 0) ̸= 0,

if the local system is sheared long enough to reach steady state.

Finally, the ratio σzz/p was found to be nearly constant, except for the fluctuations in p

caused by the layering, when considering the data coarse-grained on the sub-particle scale.

All conclusions are consistent – apart from the oscillations – on both coarse-graining length

scales. When ignoring the oscillations, the four constitutive equations (40) allow us to com-

pletely determine (re-construct) the Cartesian stress tensor in terms of the inertial number

and the confining stress σzz, which is determined by the momentum balance (36) for steady

flows.

Our current steady state stress model predicts a flow rheology (velocity profile and magni-

tude) very similar to previous models – given the rather small deviations from the original,

less general models. The main advantage is that it predicts the full, anisotropic, non-collinear

stress; furthermore, we expect that the local, objective, general constitutive model will prove

more valuable in different flow situations and especially in dynamic or evolving (non-steady)

flows.

Finally, the structural anisotropy was briefly examined. Even though it correlates qual-

itatively with the deviatoric stress, concerning its dependence on I, it displays different

quantitative response to shear, implying that it is an independent state variable that re-

quires a constitutive evolution equation by its own, as proposed in recent studies.5,7,17,44,52

Taking into account not only the anisotropy of the stress tensor but also the structural

anisotropy allows to formulate a local model with the goal to make better predictions of the

flow behavior of granular media in general flow situations. Therefore, this paper contributes

to the development of objective, inherently anisotropic, local constitutive models – in con-

trast to non-local models – where the additional internal degree of freedom plays the role of

non-local terms, but remains local in essence.
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7S. Luding and E. S. Perdahcıoğlu, “A Local Constitutive Model with Anisotropy for Vari-

ous Homogeneous 2D Biaxial Deformation Modes,” Chemie Ingenieur Technik, 83, 672–688

(2011).

8S. Chialvo, S. Jin, and S. Sundaresan, “Bridging the rheology of granular flows in three

40

http://dx.doi.org/10.1017/S0022112098008660
http://dx.doi.org/10.1098/rsta.2009.0171
http://dx.doi.org/10.1098/rsta.2009.0171
http://dx.doi.org/10.1103/PhysRevLett.108.178301
http://dx.doi.org/10.1103/PhysRevLett.108.178301
http://dx.doi.org/10.1680/geot.2010.60.5.333
http://dx.doi.org/10.1007/s10035-009-0137-3


regimes,” Physical Review E, 85, 021305 (2012).

9T. Weinhart, A. Thornton, S. Luding, and O. Bokhove, “From discrete particles to con-

tinuum fields near a boundary,” Granular Matter, 14, 289–294 (2012).

10F. Da Cruz, S. Emam, M. Prochnow, J.-N. Roux, and F. R. Chevoir, “Rheophysics of

dense granular materials: Discrete simulation of plane shear flows,” Phys. Rev. E, 72

(2005).

11I. Iordanoff and M. M. Khonsari, “Granular lubrication: toward an understanding between

kinetic and fluid regime.” ASME J. Tribol., 126, 137–145 (2004).

12GDR MiDi, “On dense granular flows,” Eur. Phys. J.E., 14, 341–365 (2004).

13P. Jop, Y. Forterre, and O. Pouliquen, “A constitutive law for dense granular flows,”

Nature, 441, 727–730 (2006).

14I. S. Aranson and L. S. Tsimring, “Continuum description of avalanches in granular media,”

Phys. Rev. E, 64, 020301 (2001).

15L. S. Mohan, K. K. Rao, and P. R. Nott, “A frictional cosserat model for the slow shearing

of granular materials,” Journal of Fluid Mechanics, 457, 377–409 (2002).

16M. Otsuki, H. Hayakawa, and S. Luding, “Behavior of pressure and viscosity at high

densities for two-dimensional hard and soft granular materials,” Prog. Theor. Phys. Suppl.,

184, 110–133 (2010).

17J. Sun and S. Sundaresan, “A constitutive model with microstructure evolution for flow of

rate-independent granular materials,” Journal of Fluid Mechanics, 682, 590–616 (2011).

18C. H. Rycroft, K. Kamrin, and M. Z. Bazant, “Assessing continuum postulates in simu-

lations of granular flow,” Journal of the Mechanics and Physics of Solids, 57, 828 – 839

(2009), ISSN 0022-5096.

19R. M. Nedderman, Statics and kinematics of granular materials (Cambridge University

Press, Cambridge, 2005).

20I. Vardoulakis and J. Sulem, Bifurcation analysis in geomechanics (Chapman & Hall,

London, 1995).

21P. A. Vermeer, “Non-associated plasticity for soils, concrete and rock,” in Physics of dry

granular media - NATO ASI Series E350, edited by H. J. Herrmann, J. P. Hovi, and

S. Luding (Kluwer Academic Publishers, Dordrecht, 1998) p. 163.

22S. Luding, M. Lätzel, W. Volk, S. Diebels, and H. J. Herrmann, “From discrete element

simulations to a continuum model,” Comp. Meth. Appl. Mech. Engng., 191 (2001).

41

http://dx.doi.org/10.1103/PhysRevE.64.020301
http://dx.doi.org/10.1017/S0022112002007796
http://dx.doi.org/10.1016/j.jmps.2009.01.009
http://dx.doi.org/10.1016/j.jmps.2009.01.009
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