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Abstract Wet granular materials in steady-state in a
quasi-static shear flow have been studied with discrete
particle simulations. Macroscopic fields, consistent with
the conservation laws of continuum theory, are obtained
by time averaging and spatial coarse-graining. Initial
studies involve understanding the effect of liquid con-
tent and liquid properties like the surface tension on the
macroscopic fields. Two parameters of the liquid bridge
contact model have been studied as the constitutive pa-
rameters that define the structure of this model (i) the
rupture distance of the liquid bridge model, which is
defined by the liquid content, and (ii) the maximum
adhesive force which is controlled by the surface ten-
sion of the liquid. Subsequently a correlation is devel-
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oped between these micro parameters and the macro-
scopic cohesive strength in the limit of zero pressure.
The macroscopic cohesive strength of the non-linear lig-
uid bridge contact model scales well with the cohesive
strength for a simple linear irreversible contact model
with the same constitutive micro parameters at equal
energy dissipated per contact. Finally, the macroscopic
torque measured at the walls, which is an experimen-
tally accessible parameter, is calculated from our simu-
lation results.

1 Introduction

Granular media are collections of microscopic grains
having athermal interactions through dissipative, fric-
tional or cohesive contact forces. External force leads to
granular flow under the condition of applied shear stress
exceeding the yield shear stress. After a finite shear
strain, at constant rate, a steady state establishes with
a typically lower shear stress, depending on both strain
rate and pressure [1]. Most studies in granular physics
focus on dry granular materials and their flow rheol-
ogy. However, wet granular materials are ubiquitous in
geology and many real world applications where inter-
stitial liquid is present between the grains. We study
the local rheology of weakly wetted granular materials
in the quasistatic regime using the Discrete Element
Method (DEM) in a shear cell set-up, where the rela-
tive motion is confined to particles in a narrow region
away from the walls, called shear band [2,?7]. The pen-
dular regime exists in partially saturated granular sys-
tem with a very low level of water content, where the
formation of liquid bridges between the particles leads
to development of microscopic tensile forces. This ten-
sile forces generated at particle level results in cohesion
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at macroscopic scale. Earlier studies have been done for
the pendular regime of liquid bridge to understand the
effect of liquid bridge volume and contact angle on dif-
ferent macroscopic fields like cohesive strength, torque
and shear band properties [3,4,5,6,7]. Other studies for
unsaturated granular media says about fluid depletion
in shear bands [8,9]. However, there is no theoretical
framework or concrete model available yet that defines
the exact correlation between the micro parameters like
the liquid bridge volume and the surface tension of the
liquid with the macroscopic cohesive strength.

In order to develop a micro-macro correlation for
the liquid bridge contact model, we initially study the
structure of the micro contact model. How is the struc-
ture of the liquid bridge contact model affected by the
microscopic parameters? How does this influence the
macroscopic cohesive strength? We do a details study
on the effect of these parameters on the macro results to
know this. For example, the effect of maximum interac-
tion distance or the distance at which the liquid bridge
between two interacting particles ruptures is studied by
varying the liquid content. On the other hand other pa-
rameters like surface tension of the liquid and contact
angle affects the magnitude of force acting between the
particles when in contact [16,5]. Various surface ten-
sion of liquids give a large scale variation of the capil-
lary force and this gives us the motivation to study the
effect of surface tension on the macro properties.

The liquid bridge interaction between the particles
are defined by the free-surface equilibrium shapes and
stability of the bridge configuration between them [10].
Phenomenologically even the simplified models of liquid
bridges are quite complex in nature. In order to improve
the computational efficiency for wet granular materials,
we replace the non-linear interactions of liquid bridges
with a simpler linear one. But in what way can a non-
linear model like the liquid bridge contact model be
replaced by a linear model? When can we say that the
two different contact models are analogous? Therefore,
we compare the realistic liquid bridge model with an
equivalent simple linear irreversible contact model [11]
that would give the same macroscopic effect.

The results in this paper are organized in three main
parts. In Sec. 3.1 of this paper we study the effect of
varying liquid bridge volume and surface tension of the
liquid on the macroscopic properties, the focus being
to find a micro-macro correlation from this study. Most
strikingly, we see a well defined relationship between
these micro parameters and the macro properties like
the steady state cohesive strength of the bulk mate-
rial and macro-torque required under shear, neglect-
ing the effect of fluid depletion in shear bands [8,9] in
quasistatic flow. In Sec. 3.2 of this paper we show the

derivation of macro torque from the boundary shear
stress. In this section we also compare this torque with
the torque calculated from forces due to contacts on
the wall particles. In Sec. 4 of this paper, we discuss
about the analogy of two different contact models, with
a goal to understand which parameters at microscopic
scale would give the same macroscopic behavior of the
system.

2 Model System
2.1 Geometry

Split- Bottom Ring Shear Cell: The set-up used for sim-
ulations consists of a shear cell with annular geometry
and a split in the bottom plate, as shown in figure 1.
The geometry of the system consists of an outer cylin-
der (radius R, = 110 mm) rotating around a fixed in-
ner cylinder (radius R; = 14.7 mm) with a rotation
frequency of f.o; = 0.01 s~'. The granular material is
confined by gravity between the two concentric cylin-
ders, the bottom plate, and a free top surface. The bot-
tom plate is split at radius R; = 85 mm into a moving
outer part and a static inner part. Due to the split at
the bottom, a shear band is formed at the bottom, it
moves inwards and widens as it goes up, due to the
geometry. This set-up thus features a wide shear band
away from the wall, free from boundary effects, since
an intermediate filling height (H = 40 mm) is chosen,
so that the shear band does not reach the inner wall at
the free surface.
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Fig. 1 Shear cell set-up
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In our previous work [12], the simulations were done
using a quarter of the system (0 ° < ¢ < 90 °) using
periodic boundary conditions. In order to save compu-
tation time, here we simulate only a section of the sys-
tem (0 ° < ¢ < 30 °) with the same periodic boundary
conditions in the angular coordinate, unless specified
otherwise. We have observed no noticeable effect on the
macroscopic behavior in comparisons between simula-
tions done with the smaller (30 °) and the larger (90 °)
opening angle.

2.2 Microscopic model parameters

Cohesion is a phenomenon of inter-molecular forces that
hold the particles of a substance together. In liquid
medium, cohesion is caused by the unbalanced inward
pull on the molecules of the liquid at the surface which
is a result of the surface tension of the liquid. On the
other hand the cohesion between grains with liquid is
assumed to originate from the liquid bonds which de-
pend on the total liquid volume. Therefore, we choose
to vary these characteristic elements of a liquid bridge
model to understand the behavior of macroscopic cohe-
sion. All the fixed interaction parameters for the contact
models [1,12] are given in appendix A. All the variable
interaction parameters like the liquid bridge volume V},
and the surface tension of liquid v are discussed in this
section.

2.2.1 Bulk saturation and liquid bridge volume

The bulk material can be divided into different states
such as the dry bulk, adsorption layers, pendular state,
funicular state, capillary state or suspension depend-
ing on the level of saturation [13,14]. In this paper we
intend to study the phenomenology of liquid bridge be-
tween particles in the pendular state, where the well
separated liquid bridges exist individually without ge-
ometrical overlap. In this section, we discuss about the
critical bulk saturation of granular materials and the
corresponding liquid bridge volumes in the pendular
state.

The bulk saturation S* is defined as the ratio of
liquid volume to void volume of the bulk [15]. The de-
marcation between the pendular state and the more sat-
urated funicular state is given by the saturation S* ~
0.3 [15]. For each particle pair with a liquid bridge, a
dimensionless volume ¢* can be defined as the ratio of
the volume of the liquid bridge at the contact, V; to the
volume of the two contacting particles, 2V,:

Vi Vo
s b 1
YT, T2 I ()

Assuming the liquid is homogeneously distributed through-

out the material, the bulk saturation S* is obtained
from the dimensionless volume ¢* and the bulk poros-
ity € from the following equation:
1—e€
2

St =mr—¢" (2)
With a bulk porosity of the material ¢ = 0.4 and an
average particle diameter d, of 2.2 mm, the transition
volume of liquid bridge is approximately found to be
284 nl. In order to study the influence of liquid content
on the macroscopic properties, we analyzed the system
for the following set of liquid bridge volumes Vj:

V, € [0, 1, 2, 4.2, 8, 14, 20, 75, 140, 200] nl  (3)

which are seen to be well within the pendular regime.
In order to investigate the functional form of cohesive
strength beyond this state, a few more simulations for
higher Vj, are done:

Vi, € [500, 1000, 5000, 10000] nl (4)

2.2.2 Surface tension of liquid

Surface tension results from the greater attraction of
liquid molecules towards each other than towards air. It
is the elastic tendency of liquids which makes it acquire
the least possible surface area with higher inter liquid-
molecules attraction. As a result, cohesive properties
of liquids is reflected in surface tension which makes
it an interesting parameter to study. The details of its
effect on microscopic capillary force will be discussed
in details in Sec. 2.3.1. The effect of surface tension on
the macroscopic properties is studied for the following
range of surface tension values:

v € [0, 0.020, 0.040, 0.060] Nm ™" (5)

Surface tension of most of the liquid-air interface at
20°C are in this range. To investigate the functional
behavior of cohesive strength beyond this state, a few
more simulations for higher ~ are done:

v € [0.10, 0.50, 1.00, 5.00] Nm™! (6)

2.3 Contact models
2.8.1 Liquid bridge capillary force model

The capillary pressure difference sustained across the
liquid-air interface due to surface tension can be de-
scribed by the non-linear Laplace-Young equation [10].
The capillary force in a pendular bridge originate from
the axial component of this force. Another component
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that contributes to the capillary force is the from the
hydrostatic pressure. Many previous studies have re-
ported calculation of capillary forces based on numer-
ical solution of the Laplace-Young equation and also
by experimental results [10,16]. The magnitude of lig-
uid bridge capillary force depends on the volume of the
liquid bridge between the particles, the contact angle
0, surface tension -y, the effective radius of the parti-
cles reyy and the inter-particle distance S equal to -
6, the overlap between the particles. With these pa-
rameters we approximate the inter-particle force f. of
the capillary bridge according to the proposal of [16].
The experimental results are fitted by a polynomial to
obtain the capillary forces as a function of the scaled
separation distance. During approach of the particles,
the normal contact force for this model is given by:

f= (7)

0 if S <0;
7fcmaz +fn it §>0;

During separation of the particles, the normal con-
tact force for this model is given by:

0 if §>5;
f=1fe if §<0; (8)
"+ f, i S >0.
where
B 27yrcos 0
Je = 171055 + 2557 ©)
- r
- — 1
S=S5 i (10)
£ = 2myrecos 6 (11)

The effective radius of two spherical particles of differ-
ent size can be estimated as the harmonic mean of the
two particle radii according to the Derjaguin approxi-
mation [17], yielding the effective radius:

27‘1'7“]'

_ 12
" ri+r; ( )

The normal contact repulsive force is given by:

The contact and non-contact forces for interacting par-
ticles can be described by a combination of an elas-
tic contact model for the normal repulsive force and a
non-linear irreversible adhesive model for the adhesive
force. Figure 4 represents a sketch of the combined lig-
uid bridge contact model. The liquid bridge adhesive

Loading

" e

fa

-5

Unloading

Fig. 2 Liquid capillary bridge model. The red lines represent
the loading direction, the blue line represents the unloading
direction when the particles are in contact and the brown line
represents the unloading for the non-contact particles with
short-range interaction force.

force acts between the particles once the contact is es-
tablished between the particles. This model equation
is applicable for mono-disperse particles [3,16] which
has been actually extended to poly-disperse system of
particles in Ref. [5]. When the particles are in contact
with overlap, the attractive force is given by Eq. 11.
This is independent of the liquid bridge volume and
depends on the surface tension of the liquid, radius of
particles and contact angle. There is no cohesive force
between the particles during approach. As the liquid
bridge only forms once the particles come in contact
with each other, the cohesive force starts acting and re-
mains constant during overlap between particles § > 0.
The liquid bridge capillary force decreases in magnitude
with increase in separation distance between the parti-
cles as given by Eq. 9. As proposed by [18], the critical
separation distance S, between the particles before the
bridge ruptures is given by:

0
Se=(1+ 5)‘/’71/3 (14)

The liquid bridge capillary force as a function of sepa-
ration distance is shown in figure 3 for different volume
of liquid bridges. The rupture distance is a function of
Vbl/?’ as stated in Eq. 14.

2.8.2 Linear irreversible contact model

In Sec. 4 we introduce a simple linear irreversible con-
tact model as proposed by [11] which can be compared
with the non-linear liquid bridge interaction model. Dur-
ing approach of the particles, the normal contact force
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Fig. 3 Liquid capillary bridge force f. scaled in terms of
gravitational force f, as a function of overlap ¢ scaled in terms
of particle diameter d,. Different colors represent different
liquid bridge volumes.
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Fig. 4 Linear irreversible contact model. The red lines rep-
resent the loading direction, the blue line represents the un-
loading direction when the particles are in contact and the
brown line represents the unloading for the non-contact par-
ticles with short-range interaction force.

for this model is given by:

if 0 <0;

15
if § > 0; (15)

0
f B {_fadhmaw + .fn

During separation of the particles, the normal con-
tact force for this model is given by:

0 if 0 < —faan™"" [ke;
f = _kc5 - fadhmaf if _fadhmar/kc < 0 S 07 (16)
7fadhma$ + fn if § > 0.

where faqn""%" is the maximum adhesive force, k. is the
adhesive stiffness and f, is the normal repulsive force
given by Eq. 13. The tangential force contact model is
explained in details in our earlier studies [12].

2.4 Dimensional analysis

In order to formulate all the modeling equations in a
constructive way in terms of the dimensionless quan-
tities, we express them in terms of nondimensionalized
form. All the length scale parameters are scaled in terms
of mean particle diameter d, = 2.200 mm. The forces
are scaled in terms of the gravitational force acting on
a single particle f; ~ 1.0939 x 10~* N. The angular
rotation of the shear cell is scaled in terms of the total
angular rotation in 200 s. For scaling the macroscopic
torque, we use the outer radius of the shear cell R, as
the length and f, as the force. Table 1 shows all the
parameters with the corresponding scaling terms used
in the equations.

3 Micro macro transition

To extract the macroscopic fields, we use the spatial
coarse-graining approach as detailed in [19,20,21]. The
averaging is performed over toroidal volumes, over many
snapshots of time assuming transitional invariance in
the tangential ¢-direction. The averaging procedure for
three dimensional system is explained in Luding 2008
[20,21]. The simulation runs for 200 s and the aver-
aging is done between 80 s to 200 s assuming thereby
the transient behavior at the onset of the shear can be
disregarded.

3.1 Macroscopic cohesive strength and its correlation
with liquid bridge volume and surface tension

Figure 5 displays shear stress as a function of pressure
in the shear band region for 75 nl liquid bridge volume.
The data for shear band region is selected by restricting
the data corresponding to critical strain rate of 80% of
maximum strain rate for different heights of the shear
cell. In the previous studies [12,22] the critical strain
rate chosen for selecting the data in the shear band re-
gion was constant at all heights of the system and equal
to 0.08 s~1. A linear behavior is observed neglecting the
data at low pressure for pressure less than 100 Pa. The
linear equation is given by:

T P c
fg/dp2

AR R o

where p is the macroscopic friction coefficient approxi-
mately equal to 0.15 and c is the macroscopic cohesive
strength obtained from the plot. For dry system, the
shear stress as a function of pressure is given by a linear
behavior without an offset, i.e. ¢ = 0. With the presence
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Table 1 Non-dimensionalization of parameters

Parameter Symbol  Scaling term
Capillary force fe g

Shear stress T fg/dp
Pressure P fa/dp
Macroscopic cohesive strength ¢ fa/dp
Liquid bridge volume Vy1/3 dp

Surface tension 5 fq/dp

Scaled cohesive strength e/~ fo(t=) /d, (=)
Rupture distance Se dp

Torque T= fgRo

Angular rotation Orot 2mwtmaz

Scaled torque T fot=2)/d, (=)

Adhesive Energy E fgdp
Scaled cohesive strength fo =5 /d,(2=5)

of interstitial liquid between the particles in the pen-
dular regime, cohesive force acts between the particles
which increases with increase in volume of liquid bridge.
This results in the macroscopic cohesive strength ¢ as
given by Eq. 17.

3.5¢

2,
i ?)
N

0 5 10 15 20 25
P/f /d ?)
g p

Fig. 5 Shear stress 7 scaled in terms of fq/dp? plotted
against pressure P scaled in terms of f4/d,2. The dotted
line represents the fitting function as given by Eq. 17 for P >
100 Pa where, u = 0.15 is the macroscopic friction coefficient,
¢ =5.973 for V;, = 75 nl and v = 0.020 Nm~—!.

Earlier studies on wet granular materials have shown
that the presence of liquid bridges between the particles
result in an increase in macroscopic cohesive strength of
the materials [3,4,12,6]. The question arises regarding
how the variation of liquid bridge volume and the prop-
erties of the materials like e.g. surface tension affect the
macroscopic cohesive strength. Our earlier studies show
the macroscopic cohesive strength ¢ as a function of lig-
uid bridge volume. It was found to increase non-linearly
with increase in volume of liquid bridge. Here, the co-

hesive strength is studied in detail, including very small
volumes of liquid bridge, including the (practically im-
possible) limit of 0 nl liquid bridge volume as given in
Eq. 3. Theoretically there is a finite cohesive strength
for 0 nl liquid bridge volume. This is a due to the mi-
croscopic capillary bridge force that acts between par-
ticles even at 0 nl liquid bridge volume as given by Eq.
11. This is called the critical cohesive strength ¢* for
a given surface tension of liquid. This is a function of
the maximum force acting between two particles when
they are in contact as given by Eq. 11 and is constant
for any volume of liquid bridge. The additional cohesive
strength for higher volume of liquid bridge is due to the
non-contact capillary forces between the particles that
are active between the particles till the liquid bridge
ruptures. This is a function on the surface tension of
the liquid and the volume of the liquid bridge. Thus,
the cohesive strength of granular materials for a given
liquid bridge volume can be written as:
c=c"+¢ (18)
where c¢* is the critical cohesive strength corresponding
to 0 nl liquid bridge volume and is a function of the
surface tension of the liquid. ¢’ is the additional cohe-
sive strength for liquid bridge volume V;, > 0 and is a
function of the liquid bridge volume and surface ten-
sion. Figure 6a) shows ¢ as a linear function of V;'/3.
Eq. 14 shows rupture distance S. as a linear function
of V,*/3. Therefore, substituting ¢’ as a linear function
of S., Eq. 18 is written as:

*

Cc
foldy?

where a and b depends on the surface tension of the
liquid.

Figure 6b) shows the macroscopic cohesive strength
is plotted as a function of surface tension for a volume of

c
= +a
foldp”

(Sc/dp) + (19)
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Fig. 6 a) ¢’ scaled in terms of f,/dp2? as a function of
V3 1/3 scaled in terms of mean particle diameter d, for v =
0.020 Nm~!. The dotted line represents the fitting function
fq/ci(/i,jl = 1.1361(V4'/3 /d,) +0.0042. b) Macroscopic cohesive

strength c scaled in terms of fy/d,? as a function of surface
tension v scaled in terms of fgy/dp for Vi, = 75 nl,y is scaled
in terms of fg/d, where fg4 is the gravitational force and d)
is the mean particle diameter. The dotted line represents the
fitting function given by Eq. 20.

75 1l liquid bridge. As shown in figure 6b), the cohesive
strength is linearly proportional to the liquid surface
tension, and can be described from the fitting line of
figure 6b) by:

¢ v
foldp® foldy
where a =~ 1.0031, k£ = -0.1841 Eq. 20 may be alterna-
tively written as:

log( ) = alog( )+ E (20)

¢ v oL@
=b"( ) (21)
fg/dp2 -fg/dp
where 0" is obtained from the fitting constant k in Eq.
20. For higher surface tension of liquid, the results devi-
ate from the fitted function of linear dependence as seen

from the figure. On the other hand, the macroscopic
friction coefficient increases (p > 0.15) with increase
in surface tension of liquid. As given by Eq. 19 and
20, the macroscopic cohesive strength is a function of
liquid bridge volume expressed in terms of maximum
interaction distance S. between the particles and the
maximum adhesive force expressed in terms of surface
tension of the liquid «. So in the later sections of this
paper we express macroscopic parameters as a function
of the micro parameters S, representing interaction dis-
tance and « representing maximum force for all contact
models.

The macroscopic cohesive strength scaled by surface
tension is plotted as function of the rupture distance
for different surface tension as shown in figure 7. The
scaled cohesive strength is a linear function of the rup-
ture distance as shown in the figure. This can be fitted
in a straight line equation given by:

c/v*

W =p(Sc/dy) +q (22)

where p = 2.1977 and ¢ = 0.1646 are obtained from the
fitting function in figure 7. The coefficients are obtained
from the fitting function in figure 7 . The characteris-

0.9 ‘ ‘
0 y=0.020 Nm™ 9
0.8} B .
® y=0.040 Nm . &
$07f vV y=0.060 Nm™ 2
o L «
<= 060 .
’g ’
1 0.5¢ ,é ‘
v 0.4 »
o8t
KIS 4
4
O.ZE e
0.1
0

005 01 015 02 025 03
Sc/dp

Fig. 7 c¢/v* scaled in terms of f,(*=)/d,(2=®) as a func-
tion of the rupture distance S. scaled in terms of particle
diameter d,. The dotted line represents the fitting function
given by Eq. 22.

tics of the liquid bridge model that varies with surface
tension of the liquid is the maximum interacting force
between the particles. Similarly, we see a variation in
interacting distance between the particles with change
in liquid bridge volume or rupture distance. So these
are the parameters of the liquid bridge capillary force
model that affects the macroscopic cohesive strength.
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3.2 Macroscopic torque analysis from the microscopic
parameters

The torque applied on the shear cell wall to rotate it
with a constant angular velocity depends on the yield
shear stress on the boundary walls. Loosely speaking,
torque is a measure of the shear stress or force acting
on the particles at the wall and thus can be used to
find an estimate of shear stress at the outer wall. Cer-
tainly, torque should have a strong connection with the
cohesion in the system. To study solely the effect of
capillary cohesion on the torque, the other parameters
like the microscopic friction is kept very small in our
simulations with fiiero = 0.01. Earlier studies of [4]
shows that the average torque acting on the rotating
part of the shear cell increases with increase in liquid
bride volume. In this section we do a details analysis
of the macroscopic torque as a function of the micro
parameters in order to understand its connection with
the cohesive strength of the material.

In order to show the evolution of torque as a func-
tion of the rotational angle #, we compare our results
with the experimental results as given by [23]. Figure
8 shows the numerically calculated torque as a func-
tion of angular rotation 6. This is in agreement with
the angular rotation required for steady state torque
evolution as given in [23], considering the difference in
magnitude of torque due to different rotation rate and
due to different friction in the system.

18000,
16000
14000
12000

210000

8000

6000/

4000

2000

T/AR

0 0.005 0.01 0.015

/ max
rot “rot

Fig. 8 Torque scaled in terms of fyR, as a function of an-
gular rotation 60,.,; scaled in terms of 0,.,:"%* = 2nWtmaz,
where w = 0.01 s~ tmmae = 200 s, for surface tension of
liquid v = 0.020 Nm~! for V;, = 4 nl (red) and V, = 200 nl
(blue).

The torque is calculated based on the contact forces
on the fixed particles on the moving part (outer) and

stationary part (inner) of the shear cell. Thus the net
torque inner and outer torque are calculated by sum-
ming up the torque for all the contact forces of the outer
wall and inner wall particles respectively, with respect
to the axis of rotation of the shear cell. The net torque
is obtained from the difference between the outer wall
torque and the inner wall torque. We multiply the to-
tal torque by a factor of :—76 in order to get the torque
for the whole system from the obtained torque of our
simulations in 30° section. Thus the torque is given by:

N
N0 5) DRI T T
=1

outer

N ~ 27
i:ZI ZjER Cij X fi,j ) X 71'7/6 (23)

inner

where N represents the number of particles, R is the set
of all particles forming the outer wall and base plate of
the shear cell, ¢;; is the position of the contact point and
fij is the interacting force. Since we do simulation on a
30° section of the shear cell, we multiply the torque with
a factor of 12 in Eq. 23 to calculate the torque for the
whole system. Only the z-component of the resultant
torque are analyzed and is denoted as T%, as we want
to study the torque required to shear the materials in ¢
direction. Figure 9 shows T* as a function of the surface
tension of liquid as given by figure . We observe that
the resultant torque increases linearly with increase in
surface tension of the liquid.
The scaled equation of torque are written as:

T/
1,0 g ) T e(S./dy) + f (24)
g P
T = (t/(i’;vg) - Hpavg)/Wa (25)

where e = 2.0864 and f = 0.1937, t is the fitting pa-
rameter obtained from figure 9 and P, is the average
pressure equal to 260 Pa based on shear cell height of
about 17 times the particle diameter.

Our results show that the coefficients given by Eq.
19 for macroscopic cohesive strength and that given by
Eq 24 for macroscopic torque are quite the same. This
shows that the two macroscopic parameters shares an
inter-relation between them.

4 An analogous linear irreversible contact
model for cohesive particles

In this section we discuss about finding the key micro-
scopic parameters for a linear irreversible contact model



Micro-Macro Transition and Simpler Contact Models for Wet Granular Materials 9

4
x 10
1.6 ;
O volonl &
® Vol inl "4:
15)  wom ets
A volgnl PRgne *
Vol 14nl e -
I Vol 20nl id - b
1.4 ‘, s
AO ﬁ Vol 75nl . , f‘
-
o O Vol 140ni PN .- *
o 1.3f ¢ Vol 200n! .5 o =224
h=d PRt - P A
N\ /,¢ - .z - -
4 P - 2= 22" .
S 1.2¢ 22" cH22®T _o2
£ .8 -7 —5‘,21’ 2z=""
==
= L% - —5‘;“ e®=" __—O
114 9’;'%5_1‘_-“ - |
¢ - P - -
.2 sstE-T __--- d
¢%8%%2%0-"
a822=- ]
0.;T L L L L L
0 0.5 1 1.5 2 2.5 3
a o -3
VUt Jd,) x 10

Fig. 9 Torque T# scaled in terms of f;R, as a function of
surface tension of liquid v scaled in terms of (f,/dp)™ where
fg is the gravitational force, R, is the outer radius of the shear
cell and d, is the mean particle diameter. The dotted lines
represent the fitting functions for different volumes of liquid
bridge given by equation T=/(f4R,) = z(fjid) +t where ¢
= 9.9279 x 103 and [ increases with increase in volume of the
liquid.
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Fig. 10 T scaled in terms of f4(1=%) /d,(2=<) as a function
of rupture distance S. scaled in terms of particle diameter d,,
for different surface tension of liquid where T” is given by Eq.
25. The dotted line represents the fitting function as given by
Eq. 24.

[11] that is macroscopically analogous to liquid bridge
contact model. An explanation of the linear irreversible
contact model used for this comparison is explained in
[11]. Unlike the liquid bridge contact model, the force
for the linear irreversible contact model is simple and
independent of polydispersity in the system. Figure 11
shows the force-overlap distribution for the two contact
models showing the loading and unloading directions of
forces which are irreversible.

Fig. 11 Force-overlap diagram for the linear-irreversible con-
tact model (red) as compared with the liquid bridge model
(blue). The arrow shows the loading and the unloading direc-
tions for all forces.

As discussed in section 3.1, the macroscopic cohe-
sive strength for the liquid bridge model are defined by
the rupture distance of the liquid bridge which is de-
pendent on the liquid bridge volume and the magnitude
of maximum interaction force which is governed by the
surface tension of the liquid. Assuming that the non-
linear liquid bridge capillary force can be replaced by
a simple irreversible linear adhesive force between the
particles with the same macro characteristics with an
equivalent microscopic characteristics, we compare the
cohesive strength of the two models as explained in Sec.
4.1.

4.1 An approach towards equal maximum force and
equal interaction distance

The key parameters that define the cohesive force of
a linear irreversible contact model are the maximum
adhesive force and the adhesive stiffness. Several sim-
ulations have been run for the linear irreversible con-
tact model in the same numerical set-up with the same
maximum adhesive force as the liquid bridge model and
adhesive stiffness that would result in the same inter-
action range for different volumes of liquid bridge for
different surface tension of liquid. The adhesive stiff-
ness that are equivalent to the liquid bridge volumes
as given by Eq. 3 for different surface tension as given
by Eq. 5. For surface tension of liquid 0.020 Nm~?! the
adhesive stiffness for different volumes of liquid are:
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Fig. 12 Adhesive force f. scaled in terms of gravitational
force fy as a function of overlap § scaled in terms of mean
particle diameter dj, linear irreversible contact model (red) as
compared with the liquid bridge model (blue) for equal max-
imum force and equal interaction distance. The yellow line
represents the liquid bridge contact model for mean particle
diameter d,,. The arrow shows the loading and the unloading
directions for the short-range forces.

kagn € [ 1.11, 0.88, 0.69, 0.56,
0.46, 0.41, 0.26, 0.21, 0.19] Nm~" (26)

The results of macroscopic cohesive strength c as scaled
by surface tension of liquid  for the liquid bridge model
(blue) and linear irreversible model with equal maxi-
mum force and equal interaction distance are shown in
figure 14. The results are not really analogous as seen
from the figure as the intercepts for the fitting lines of
the two models are different. However, the fitting lines
for the two different contact models are parallel. The
fitting parameters for the liquid bridge contact model
shown in the figure is given by:

c/r"
W =g(S./dy) +h (27)
g = 2.1716 and h = 0.1370 for liquid bridge contact
model, g = 2.0984 and h = 0.3407 for linear irreversible
contact for surface tension v = 0.020 Nm~!. The fitting
coefficients are obtained from the dotted and solid lines
respectively in figure 14.

So for a given volume of liquid bridge and a given
surface tension of liquid, the linear irreversible contact
model with the same maximum force and same inter-
action distance has a higher cohesive strength.

4.2 An approach towards equal maximum force and
equal adhesive energy

Efforts are made to find an analogous linear irreversible
contact model for a given liquid bridge contact model by
equalizing the maximum force and interaction distance
for the models as discussed in section 4.1. However, the
cohesive strength for the two models depend differently
on the interaction distance for a given maximum force.
Now, approaches are made to quantify the equivalent
intensity of cohesion for the two contact models with an
equal maximum adhesive force and equal adhesive en-
ergy E. The adhesive energy for a given contact model
is obtained by the total area under the force-overlap dis-
tribution in figure 13. A linear analogous for the liquid
bridge contact model is obtained with the equal max-
imum force with surface tension 0.020 Nm~"! and the
adhesive stiffness adjusted to have the equal adhesive
energy as given by:

kaan € |00, 2.95, 2.11, 1.49, 1.10,
0.84, 0.74, 0.39, 0.29, 0.25] Nm~' (28)
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Fig. 13 Adhesive force f. scaled in terms of gravitational
force fy as a function of overlap ¢ scaled in terms of mean
particle diameter d,, for linear irreversible contact model (red)
as compared with the liquid bridge model (blue) for equal
maximum force and equal adhesive energy. The yellow line
represents the liquid bridge contact model for mean particle
diameter dj,. The arrow shows the loading and the unloading
directions for the short-range forces.

The force-overlap for contacts with 6 < 0 for the two
comparable contact models with equal adhesive energy
are shown in figure 13. Figure 14 shows ¢/v“ as a func-
tion of rupture distance S, for the liquid bridge model
(blue) of surface tension v = 0.020 Nm~! compared
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Fig. 14 ¢/~ scaled in terms of f,(1=%) /d,(2=®) as a func-
tion of the rupture distance S, scaled in terms of mean par-
ticle diameter d,, for the liquid bridge model (blue) and the
linear irreversible model with equal interaction distance (red)
and equal adhesive energy (green) for v = 0.020 Nm~!. The
dotted and the solid lines represent the fitting function given
by Eq. 27.

with the two cases of linear irreversible contact model
with equal interaction distance (red) and equal energy
(green). The linear irreversible model with equal energy
as the liquid bridge model has a lower interaction dis-
tance. So the functional behavior of cohesive strength
for the linear irreversible contact model for small inter-
action range can be understood from this. As observed
from figure 14, this is a non-linear function of the in-
teraction distance S. at low interaction distance and
becomes linear for higher range.

Figure 15 shows the cohesive strength as a function
of total adhesive energy for the liquid bridge model
(blue) of surface tension v = 0.020 Nm~! compared
with the two cases of linear irreversible contact model
with equal interaction distance (red) and equal energy
(green). As seen from the figure, for a given maximum
force which is determined by the surface tension of the
liquid, the macroscopic cohesive strength c is equal for
the the liquid bridge model and the linear irreversible
model with equal energy. The cohesive strength for the
linear irreversible model with equal interaction distance
is higher as it has higher adhesive energy than the lig-
uid bridge model. However, all the data for the three
cases as explained above collapse and functionally they
behave the same.
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Fig. 15 cscaled in terms of f;/d,? as a function of adhesive
energy E scaled in terms of fyd, for the liquid bridge model
(blue) and the linear irreversible model with equal interaction
distance (red) and equal adhesive energy (green) for v = 0.020
Nm~!.

4.3 An approach towards different maximum force for
the two contact models

In the earlier sections, results show that for a given
maximum force and it is observed that the cohesive
strength for the two contact models functionally behave
the same under various conditions. To study the func-
tional order for the two models under different max-
imum force conditions, we study the macroscopic be-
havior of the linear model for different surface tension.
Simulations equivalent to surface tension 0.040 Nm~!
and 0.060 Nm~! are run with an equivalent adhesive
stiffness 2 times and 3 times of that given by Eq. 26
keeping the interaction distance same. Figure 16 shows
a comparison of the force-overlap for the two contact
models for surface tension of liquid 0.020 Nm~! and
0.040 Nm™~1.

Figure 17a) shows a plot of macroscopic cohesive
strength as a function of total adhesive energy dissi-
pated by the particles per contact for different surface
tension for the liquid bridge model and linear model.
For the same energy dissipated per contact, a higher
surface tension of liquid results into a higher macro-
scopic cohesion. From figure 17b), for a given surface
tension of liquid -y, the macroscopic cohesive strength
is given by:

c/”

Fyree WE/ fydy)? +v(E/ fodp) +w  (29)
g P

where F is the adhesive energy dissipated per contact
for the corresponding contact model, and 8 =~ 0.33, u
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Fig. 16 Adhesive force f. scaled in terms of gravitational
force fy as a function of overlap ¢ scaled in terms of mean -
particle diameter d,, for linear irreversible contact model (red) 10 -
as compared with the liquid bridge model (blue) for different P v'o
maximum force and equal interaction distance. The yellow T 0.8t ’64
lines represent the liquid bridge contact model for mean par- Qo -1
o =
ticle diameter dp. The arrow shows the loading and the un- § ,wvs v=0.020 Nm_1
loading directions for the short-range forces. i o 0.6r %W © y=0.040 Nm™" |
T P © y=0.060 Nm™
%— 0.4r
=-1.8802, v = 2.6447 and w = 0.1614 as obtained from -
the fitting function in figure 17. 0.2

5 Conclusion

We obtained a fitting correlation to obtain the macro-
scopic cohesive strength for the liquid bridge model for
given microscopic parameters. The parameters that de-
fine the structure of the liquid bridge contact model are
the volume of the liquid bridge, surface tension of lig-
uid and the contact angle. A detailed study on the effect
of liquid bridge volume and surface tension of liquid is
done in this paper. Both these microscopic parameters
control the cohesion in wet granular materials in differ-
ent ways. We found that the macro cohesive strength of
the system is linearly dependent on the maximum force
e.g. the surface tension is one of the parameters that
controls the maximum force of liquid bridge. On the
other hand we found that the macro cohesive strength
is also linearly dependent on the maximum interacting
distance between the particles which depends on the
volume of the liquid bridge. From these results we have
obtained a good micro-macro correlation for the liquid
bridge model.

We have analyzed the effect of cohesion on the torque
required to rotate the system at a given rotation rate
which is another macroscopic property of the system.
It is observed that the torque and the macro cohesive
strength of the system are well related and show similar

o
| f
o L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6
E/(fgdp)

Fig. 17 a) cscaled in terms of f,/d,? as a function of adhe-
sive energy E scaled in terms of fyd, for different surface ten-
sion of liquid. b) Macroscopic cohesive strength ¢/v? scaled

in terms of félfﬂ)/dg,zfm as a function of adhesive energy E
scaled in terms of fyd, for different surface tension of liquid
as compared with the linear irreversible model. The dotted
line represents the fitting function is given by the Eq. (29).
Different symbols denote o liquid bridge model and V linear
irreversible model.

linear dependence (slope and offset) on the microscopic
parameters.

An analogy is established between the liquid bridge
model and a simple linear irreversible contact model.
These two models have different micro-macro correla-
tions. However, we found that the macroscopic cohesive
strength for the two models are same if the maximum
force and the total adhesive energy for the two mod-
els are the same, irrespective of the nature of attrac-
tive force acting between the particles. In this way we
can always replace non-linear liquid bridge force for the
system and obtain the macroscopic properties from an
analogous linear adhesive model that takes less compu-
tational time. Results for different magnitude of max-
imum force of the two models show that they behave
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functionally different for different magnitude of maxi-
mum force. The two types of contact models with equal
energy and different magnitude of maximum force have
different macroscopic cohesive strength. So equal adhe-
sive energy dissipated per contact is not the sole micro-
scopic condition for the two contact models to be analo-
gous. However, overall a correlation is obtained between
the cohesive strength and the microscopic parameters
like the maximum force and the total adhesive energy
dissipated per contact. This correlation is shown to hold
good for any irreversible adhesive contact model.

In this paper our results are focused on the micro-
macro correlations and comparing different contact mod-

els. However, it would be interesting to study the the
forces and their distribution for wet cohesive system.
Our future study will be focused on understanding the

microscopic origin of the force network and statistics of

the inter-particle forces inside a shear band.

A Appendix

Key contact model parameters
Sliding friction coefficient p 0.01
Elastic stiffness k£ 120 Nm ™!

Viscous dissipation coefficient n 0.001
Angular frequency w 0.01 s~!
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