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Abstract In the past 12 years, numerous new theoretical continuum models have
been formulated to predict particle segregation in size-based bidisperse granular
flows over inclined channels. Despite their presence, to our knowledge, no attempts
have been made to compare and contrast the fundamental basis upon which these
continuum models have been formulated. In this manuscript, firstly, we aim to
illustrate the difference in these models including the incompatible nomenclature
which impedes direct comparison. Secondly, we utilise (i) our robust and efficient
in-house particle solver MercuryDPM and (ii) our accurate micro-macro (discrete
to continuum) mapping tool called coarse-graining, to compare several of the pro-
posed models.

Through our investigation involving size-bidisperse mixtures, we find that (i)
the proposed total partial stress fraction expressions do not match the results
obtained from our simulation and (ii) the kinetic partial stress fraction domi-
nates over the total partial stress fraction and the contact partial stress fraction.
However, the proposed theoretical total stress fraction expressions do capture the
kinetic partial stress fraction profile, obtained from simulations, very well. Thus,
possibly highlighting the reason why mixture theory segregation models work for
inclined channel flows. However, further investigation is required to strengthen the
basis upon which the existing mixture theory segregation models are built upon.

Keywords Micro-Macro mapping · Coarse-graining · Granular media · Particle
Segregation · Mixture theory · Discrete particle simulations

1 Introduction

Granular materials in nature [10,14] and industry [14] often comprise highly poly-
disperse particle mixtures. The constituents of these mixtures can vary in size,
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density, inelasticity, shape, surface roughness, etc. When such polydisperse mix-
tures are subjected to external forces such as shaking, stirring or shearing [10],
these mixtures often segregate, leading to complex pattern formations such as
particle segregation. Several factors have been reported to be responsible for seg-
regation or de-mixing in polydisperse mixtures, where individual studies confirm
the influence of varying size [48], density [40], inelasticity [4], shape [30] and sur-
face roughness [43]. However, in rapid free-surface flows over inclined channels, it
is the differences in size and density that are the dominant factors [2,5,6] leading
to particle segregation.

Kinetic sieving [9] is the dominant mechanism in dense granular flows. Al-
though an easy to comprehend mechanism, its effects can be mind-boggling. In
order to illustrate the idea of kinetic sieving, let us consider a size-bidisperse gran-
ular mixture flowing down an inclined channel. As the flow progresses, fluctuations
in the local pore space cause particles to fall under gravity into the space/gaps
that are created beneath them. As a result, smaller-sized particles fall easily into
these gaps leading to gradual percolation of them towards the base of the flow (i.e.
in the direction of gravity). Simultaneously, force imbalances, lever/squeeze parti-
cles towards the surface; this process was named as squeeze expulsion by Savage
and Lun [31]. The combination of kinetic sieving and squeeze expulsion results in
a net migration of large particles upwards and small particles towards the base.
As a result, this simple mechanism results in stratified layers that one terms as
particle segregation.

In 2011, Fan and Hill [11] proposed an alternative kinetic-stress-driven mech-
anism for segregation. The model was originally derived for vertical chutes; how-
ever, it was later extended to include the gravity-driven mechanism [20, 21] and
applied to inclined planes and rotating drums. Their model is very similar to
the gravity-driven models and still uses the ideas of kinetic-sieving, however, it is
driven by gradients in kinetic-stress rather than lithostatic pressure as in the case
of the gravity-driven mixture theory models. In the kinetic-stress-driven mecha-
nism, all particles are squeezed away from regions of higher fluctuation energy.
During this process, smaller particles filter through the matrix of other particles,
analogous to the gravity-driven void filling mechanism; resulting in a net migration
of small particles towards regions of lower fluctuation kinetic energy. Previously,
Windows-Yule et. al. [50] experimentally investigated the competition between
gravity-driven, kinetic-stress-driven, and other segregation mechanisms in axially
non-uniform drums. Here, we consider a simpler scenario of size-bidisperse mix-
tures rapidly flowing down an inclined plane.

In rapid free-surface flows, opposing kinetic sieving is diffusive remixing, which
causes the random motion of particles as they collide and shear over each other
[22]. Based on the relative strength of these competing mechanisms, the mixture
strongly or weakly segregates; the relative strength is captured by the segregation
Peclet number [18]. However, both experiments [48] and particle simulations [38]
have shown that, in rapid chute flows, the effect of diffusive remixing is around
10% the strength of segregation.

Apart from kinetic sieving, which is a purely size-based effect, buoyancy effects
due to differences in particle density also play a major role in particle segregation
[23]. For bidisperse mixtures, varying in particle size and density, experiments
[13] and particle simulations [41] indicate that a balance between the two driving
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mechanisms is possible, i.e. kinetic sieving and buoyancy effects, which in turn can
keep the mixture homogeneously mixed.

Although complete understanding of the dynamics of segregation is beyond
the scope of this manuscript, it becomes increasingly difficult as one allows more
particle properties to be varying, i.e. size, density, shape, roughness, etc. In or-
der to carry out the comparison between existing particle segregation continuum
models, we focus on the leading-order effect of bidisperse mixtures varying in size
only. As an alternative to experiments, we employ discrete particle simulations
(DPMs) [24] from which macroscopic quantities, appearing in the continuum mod-
els, are extracted. To do this accurately, we use an appropriate micro-macro map-
ping technique called coarse-graining [1,16], as this method gives continuum fields
that exactly satisfy the continuum equations. The method has previously been
extended to include the effects of boundaries or discontinuities [47] and more re-
cently to unsteady polydisperse mixtures [42]. The technique has been successfully
applied to investigate monodisperse shallow granular flows [46] and size-bidisperse
mixtures [38,45]. However, Weinhart et al. [45] focussed on steady bidisperse flows
alone; here we consider both steady and transient data. For our simulations, we
use our in-house open-source code MercuryDPM [36,37,39] which includes all the
coarse-graining tools utilised in this manuscript.

The following section, Sec. 2, gives a brief review of the main theoretical mod-
els that have been proposed to describe size-segregation. In this section, special
care is taken to express all the continuum segregation models using a uniform no-
tation. Thereby, facilitating direct comparison between them. A look-up table, see
Table 1, is also provided which relates the different notations used in each of these
models. On the other hand, Sec. 3 contains a description of the setup of our particle
simulations, which we utilised to compare and contrast the theoretical segregation
models. More importantly, to perform the discrete to continuum (micro-macro)
step, Sec. 4 lists the coarse-graining (CG) expressions, which are utilised to ob-
tain the required macroscopic information from the discrete data. This section is
provided because in the case of measuring the pressure-scaling functions, which
are utilised in the segregation models, it is vitally important that the micro-macro
step is done in a consistent way; it is very easy with other micro-macro methods
to produce misleading and even erroneous results for the case of size-segregating
flows. Sec. 5 explains how to apply the coarse-graining formulae from Sec. 4 to mi-
cro particle data obtained from the particle simulations setup in Sec. 3. The results
are presented in Sec. 6, where the different segregation models presented in Sec. 2
are compared and contrasted. Conclusions and future directions are presented in
Sec. 7. Moreover, sections Sec. 3, Sec. 4 and Sec. 5 are provided for completeness,
so that this manuscript contains a full description of the tools required to validate
size-based particle segregation continuum models; however, if you are only inter-
ested in the actual validation of the models, sections Sec. 2, Sec. 6 and Sec. 7 are
written such that they can be treated as a stand-alone article.

2 Theoretical models

In this section, we present a brief overview of the existing size-based segregation
continuum models, which have been formulated in the past few decades.
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Fig. 1 A snapshot of a bidisperse mixture, with particle size-ratio ŝ = 1.3, flowing in a periodic
box inclined at 26◦ to the horizontal (discrete particle simulation). Colours/shades indicate
the base/boundary (yellowish green, Fb), species type-s and type-l (blue, Fs and red, F l). We
define the bulk as Fs ∪ F l. Here, s and l denote small and large constituents.

Based on the understanding of percolation and diffusion, Bridgwater et al. [3]
were the first to formulate a continuum model quantifying particle segregation in
a size-bidisperse mixture. Given x, y and z denotes the down-slope, cross-slope
and depth direction (Fig. 1), their governing equation was in terms of the volume
concentration of small particles expressed as a fraction of the solid volume (φ),

∂φ

∂t
+

∂

∂z

(
qφ(1− φ)2

)
=

∂

∂z

(
D
∂φ

∂z

)
, (1)

where t is the time, q and D are the segregating velocity and diffusion rates.
However, they soon realised that the rate of segregation q, i.e. segregating velocity,
was dependent on the shear rate, the particle size-ratio and the normal pressure [3].

A few years later, Savage and Lun [31] used statistical mechanics and infor-
mation entropy theory to arrive at a segregation model from the first principles.
Their model was formulated in terms of number densities and fluxes. Although the
model of Savage and Lun [31] considered various functional forms for the shear
rate, i.e. different downslope velocity profiles u(z), it certainly had a downside
because their model predicts segregation even in the absence of gravity, which is
odd given kinetic sieving is a gravity-driven process.

Almost a decade later, from a different perspective, Dolgunin and Ukolov [8]
developed a model using an equivalent mass transfer equation, which accounts
for the granular mass transfer due to convection, quasi-diffusion and segregation.
Their resulting governing equation is very similar to the form of Bridgwater et
al. [3], i.e.,

∂φ

∂t
+

∂

∂x
(φu) +

∂

∂z
(qφ(1− φ)) =

∂

∂z

(
D
∂φ

∂z

)
, (2)

where u is the down-slope flow velocity. Although, the above model (2) had all
the features essential for describing particle segregation, a general framework to
derive such models was still missing.

In 2005, Gray and Thornton [19] proposed a general continuum framework to
model size-based segregation by utilising the principles of mixture theory [29]. Gray
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and Thornton [19] postulated that in a gravity-driven process of segregation, larger
particles bear more of the pressure or normal stress relative to their local concen-
tration in comparison to the smaller particles, which are busy percolating into the
voids underneath. This postulate is quantified by subdividing or partitioning the
pressure/normal stress among the two constituents (e.g. large and small), where
the subdivision is done by the so called pressure-scaling functions [19]. Thereby, the
resulting framework governing size-based particle segregation, including diffusive
remixing [18], follows as

∂φ

∂t
+∇ · (φu)−

∂

∂z
(qF (φ)) =

∂

∂z

(
D
∂φ

∂z

)
, (3)

where ∇ := [∂/∂x, ∂/∂y, ∂/∂z]T and F (φ) is the function that specifies the segre-
gation flux as a function of the local volume fraction of small particles. The exact
details concerning the forms of q and F (φ) depend on the physical assumptions
and the choice of the so-called pressure-scaling functions. Thereby, the focus of this
work is to compare and contrast these different forms of pressure-scaling functions,
using particle simulations and advance micro-macro tools. In the original model
of Gray & Thornton q was taken to be a constant, D = 0, and F (φ) = φ(1 − φ).
The framework (3) is itself clearly a simplification, as diffusion only acts in the
z-direction and the segregation also occurs in the z-direction, i.e. not the direc-
tion defined by gravity. However, the original framework was soon extended to
include the effects of diffusive remixing [18], D 6= 0, and interstitial fluids [35].
More recently, developments by [15, 26, 41] have introduced revised forms of scal-
ing functions which in turn has lead to different forms of F (φ). The origins of
these scaling functions are explained, documented and compared in the following
section, Sec. 2.1.

In 2010, May et al. [27,28] extended the Gray and Thornton model to include
non-uniform (exponential) shear profiles (i.e. by modifying q in (3)). Assuming
no diffusion, they modified the segregation rate q to depend on the vertical di-
rection (z) and be proportional to the shear rate, γ̇(z) = du/dz. Based on these
assumptions, they proposed the following functional form

q(z) = sγ̇(z) = q0e
−z/λ, (4)

where s is a dimensionless segregation parameter with q0 and λ being fitting pa-
rameters. However, the extended model could only capture the qualitative features
in comparison to their experimental findings.

In 2012, Marks et. al. [26] significantly extended the particle segregation con-
tinuum theories to polydisperse flows, which also allows for varying density and
size effects. Besides this, they also attempt to incorporate the shear-rate depen-
dency in a consistent way. By doing so, they include the dependence of percolation
velocities on spatially varying shear rate and particle size-ratio, i.e. q in (3) is a
function of both shear rate (γ̇) and particle size-ratio (ŝ). Moreover, they were also
the first to attempt to quantify the segregation flux, F (φ), in terms of the real
particle properties such as the particle size-ratio (ŝ) itself.

New extensions to the Gray and Thornton [19] continuum framework were
added, in the year 2014, by Tunuguntla et al. [41], where they make subtle fun-
damental changes to the basis upon which Gray and Thornton [19] model is built
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upon. However, this did not alter the resulting framework presented in (3). Never-
theless, both, Tunuguntla et al. [41] and Gajjar and Gray [15] presented different
possible forms for segregation fluxes, F (φ), which intended to quantify segrega-
tion in more realistic scenarios. Besides these extensions, the Gray and Thornton
framework was further developed to accord for the effects due to density differ-
ences [17,26,41]. Thus, enabling us to predict particle segregation in a more wider
range of applications.

In the same period, 2014 to present, an alternative transport equation approach
is taken by Leuptow and co-workers [12, 32, 33, 51], who use the same general
framework (3) to model particle segregation in two-dimensional bounded heaps,
circular drums and chute flows. Similar to several extensions of mixture theory
segregation models, listed above, they have also extended their models to account
for polydisperse size effects [33] and density differences [51]. However, to close
the model, they utilise particle simulations to determine the flow kinematics and
physical parameters such as the incompressible bulk velocity field and diffusion
coefficient. Similar to Marks et al. [26] and Tunuguntla et al. [41], Leuptow and co-
workers [12,32,33,51] also consider the percolation velocity to be dependent on the
spatially varying shear rate and particle size-ratio. This approach of closing their
models with particle simulations, does produce relatively good results; however,
it is unable to capture flow transitions that lead to stratification patterns [25,
49], which the mixture theory models are able to predict. Moreover, it should be
noted that they use a binning method to extract their continuum fields, which are
required to close their models. The binning method has extra degrees of freedom
compared to the coarse-graining method we utilise here, namely how to split the
stress between the large and small particles. Making different choices of this split
has a large effect on the results and crucially incorrect splitting of the stress can
even change the directions of segregation, see the discussion in Staron and Phillips
[34] for more details. For this reason, we utilise our coarse-graining method for
bidiperse mixtures, which is summarised in Sec. 4.

In this manuscript, we focus on size-based mixture theory segregation models
and utilise particle simulations as a validation tool alone. The key idea behind
mixture theory segregation models is that particle segregation is caused by a gra-
dient in lithostatic pressure caused by gravity, whereas in the case of the Fan-Hill
model [11] segregation is caused by a gradient in kinetic-stress. Thus, through the
use of particle simulations and advance micro-macro tools, we scrutinise and quan-
tify each of this mechanism and, more importantly, see how these two mechanisms
play a role in the process of size-based particle segregation. Moreover, as implied
from this manuscript’s title, we also compare and contrast the different proposed
forms of these models. The ultimate aim is to develop a theoretical model that can
accurately predict particle size-segregation, thus, eliminating the need for particles
simulations entirely. However, the work in this manuscript is only a stepping stone
towards this goal.

As a first step towards our analysis, in the following section, we review the
basic background theory upon which these mixture theory models are based on
and propose an unified notation to make model comparisons easier, both, for us
and for future research.
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2.1 Mixture theory framework

Mixture theory deals with partial variables that are defined per unit volume of the
mixture rather than with the intrinsic variables associated with the material, i.e.
the values one would measure experimentally, such as the material density of glass
or steel particles.

The basic mixture postulate states that every point in the mixture is simul-
taneously occupied by all constituents. Hence, at each point in space and time,
there exist overlapping fields (displacements, velocities, densities) associated with
different constituents.

Since each constituent is assumed to exist everywhere, a volume fraction Φν

is used to represent the percentage of the local volume occupied by constituent ν.
Clearly, for size-bidisperse mixture,

Φs + Φl + Φa = 1, (5)

where Φa denotes the fraction of volume corresponding to interstitial pore space
filled with a passive fluid, e.g. air. However, for convenience, studies often consider
volume fraction of the constituents per unit granular volume rather than per unit
mixture volume, e.g. [35]. As the volume fraction of granular constituents per unit
mixture is

Φg = Φs + Φl, (6)

the volume fraction of each constituent per unit granular volume is defined as

φν = Φν/Φg, with ν = s, l, (7)

which also sum to unity,
φs + φl = 1. (8)

For each individual constituent, conservation laws for mass, momentum, energy
and angular momentum can all be obtained, but here for simplicity, we only con-
sider mass and momentum balance for bulk constituents and ignore the interstitial
fluid effects. Each bulk1 constituent satisfies the fundamental laws of balance for
mass and momentum [29]. For a flow down a plane inclined at a constant angle θ,
these balances are

∂tρ
ν +∇ · (ρνuν) = 0,

ρν(∂tu
ν + uν · ∇uν) = −∇ · σν + ρνg + βν ,

(9)

given in terms of partial flow quantities, such as partial stress, σν , density, ρν , and
velocity, uν = [uν , vν , wν ]T , in the three coordinate directions, corresponding to
each constituent indexed ν = s, l. g = (gt, 0,−gn)

T is the gravity vector, with
g being the standard acceleration due to free fall; gt = g sin θ and gn = g cos θ.
Additionally, the variable βν represents the interspecies drag force due to resisting
motion between the constituents. As these are internal forces residing within the
granular mixture, from Newtons’ third law the sum of these drags must be zero,
i.e., βs+βl = 0. Furthermore, the bulk density ρ, barycentric granular velocity, u
and the bulk stress σ are defined as ρ = ρs+ρl , u = (ρsus+ρlul)/ρ , σ = σs+σl

respectively.

1 The bulk is defined as Fs ∪ F l, see Fig. 1, excluding the interstitial pore-space.
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The intrinsic variables defined for each of the constituents also play an integral
role in the constitutive theory. These quantities are related to the partial quanti-
ties and hence are the key features of mixture theory. The intrinsic density of the
constituent ρν∗, i.e. the mass of the constituent per unit volume of the constituent,
is related to the partial density by constituent volume fraction φν . The same rela-
tion applies to the partial and intrinsic stresses, σν and σν∗, of the constituents.
However, in standard mixture theory the partial velocity, uν , of the constituent is
identical to the intrinsic velocity, uν∗, of the constituent,

ρν = φνρν∗, σ
ν = φν

σ
ν∗, uν = uν∗, (10)

where all the intrinsic quantities are denoted with ’∗’. Note, as here we define the
density per unit granular volume, φν , not per unit mixture volume Φν , ρν∗ is still
a bulk density (i.e. it is averaged over the grain volume plus the air volume), hence
it is the bulk density of glass or steel particles in a non-mixed state.

Gravity-driven segregation

Most of the mixture flows involved in industrial and geological applications are
shallow in nature, implying that the flow quantities in the down- and cross-slope
directions (i.e. x- and y-directions) are nearly uniform. Moreover, we assume that
the partial densities and momenta become quasi-steady even before the flow seg-
regates, implying that the temporal derivatives ∂t(ρ

ν) and ∂t(ρ
νuν) vanish after

a certain equilibrium time te. Therefore, we arrive from the momentum equation
(9)2 at

0 = −
∂σν

αz

∂z
+ ρνgα + βν

α with α = x, y, z, t > te. (11)

where the subscript denotes the tensorial/vectorial component. Summing (11) over
each particle species ν = s, l for α = z, setting σzz|z=∞ = 0 implies that the flow
is in lithostatic balance

∂σzz
∂z

= −ρg cos θ. (12)

As stated earlier, the key idea behind the gravity-driven segregation models [15,17,
19,41] is represented by the stress fractions2 (fν). These stress fractions determine
the amount of stress to be distributed among each of the constituents, i.e., as
smaller particles percolate downwards through the granular matrix, they carry less
of the weight. Thus, causing the larger particles to proportionately carry more of
the weight. In standard mixture theory, the constituent normal stress or pressure
is assumed to be linearly related to the bulk normal stress or pressure through
the volume fraction, i.e. fν is assumed to be equal to φν . We have, however, a
crucial deviation from the standard approach in order to account for the effects
of segregation. From the partial stress relation in (10), we have

σν
zz = φν σν∗

zz︸︷︷︸
fν∗σzz

⇒ fν = φνfν∗ ⇒ σν
zz = fνσzz

(13)

where fν∗ is defined as an intrinsic stress fraction and physically fν∗ is the frac-
tion of the total stress bore by constituent ν. On the other hand we define fν

2 Stress fractions can also be called as pressure scaling functions, see [19].
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Models fν∗ fν

Gray & Thornton [19]

Thornton et. al. [35] - fν

Gajjar & Gray [15]

Marks et. al. [26] fν -

Tunuguntla et. al. [41]

Fan & Hill [11] Rν ψν

Hill & Tan [21]

Table 1 Notations utilised in the existing mixture theory segregation models.

as the over/under stress, which indicates the amount of excess stress bore by
larger/smaller particles and is a convenient mathematical construct. From (13), it
is clear that fν is simply related to fν∗ as fν = φνfν∗. Previously, models have
been formulated both in terms of fν and fν∗ and more confusingly both have been
labelled simply fν . In Table 1, we show the current notation (13) compared with
the ones used in previous papers on modelling segregation.

For a monodisperse “mixture”, the whole mixture weight is supported by the
mixture itself, i.e.

fν = 0 for φν = 0,

fν = 1 for φν = 1.
(14)

This is taken into account by defining the intrinsic stress fraction, fν∗, to take the
following functional form, see the work of Tunuguntla et al. [41],

fν = φν (1 +Bν [φν ](1− φν))︸ ︷︷ ︸
fν∗

, (15)

where the brackets [ ] denote a functional dependence. The parameter Bν [φν ]
denotes a material parameter, which is in general a function of the local partial
volume fraction of the species type-ν. As we are restricting our attention to just
two mixture components (small or large), from this point onwards, without any
loss of generality, we will simply define φs := φ. Thereby, based on the definition of
stress fraction (15), Table 2 and Table 3 lists the intrinsic scaling functions (f∗ν)
used in previous segregation models. In both the tables, variables b, Aγ and γ
are material or fitting parameters with ŝ being the particle size-ratio dl/ds. Gajjar
and Gray [15] determined the values of Aγ and γ such that the maximum of the
two stress fractions f l

gt and f
l
gg are the same, where f l

gt and f
l
gg denote the stress

fractions used in the models of Gray and Thornton [19] and Gajjar and Gray [15].
However, as mentioned by Gajjar and Gray, the values of Aγ and γ are dependent
upon the actual particle properties. Note: f l

gt = φlf l∗
gt and f l

gg = φlf l∗
gg.

Besides satisfying the conditions in (14), an important constraint is further
imposed by the definition of bulk stress (10), where

fs + f l = 1, (16)

as is clear from Table 2 and Table 3.
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Model fs∗ Bs[φ]

Gray & Thornton [19] 1 − b(1 − φ) −b (constant)

Marks et al. [26]
1

φ+ ŝ(1− φ)

1− ŝ

φ+ ŝ(1− φ)

Tunuguntla et al. [41]
1

φ+ ŝ3(1− φ)

1− ŝ3

φ+ ŝ3(1− φ)

Gajjar & Gray [15] 1− bAγ(1− φ)(1− γφ) −bAγ(1 − γφ)

Bridgwater et al. [3] 1 − (1 − φ)2 −(1 − φ)

Table 2 Stress fractions corresponding to small constituents. Note that we assume the model
from Bridgwater et al. [3] to be a mixture theory model, for which we back compute the
pressure-scaling for the smaller constituent of the mixture.

Model f l∗ Bl[φ]

Gray & Thornton [19] 1 + bφ b (constant)

Marks et al. [26]
ŝ

φ+ ŝ(1− φ)
−

1− ŝ

φ+ ŝ(1− φ)

Tunuguntla et al. [41]
ŝ3

φ+ ŝ3(1− φ)
−

1− ŝ3

φ+ ŝ3(1− φ)

Gajjar & Gray [15] 1 + bAγφ(1 − γφ) bAγ(1 − γφ)

Bridgwater et al. [3] 1 + φ2 φ

Table 3 Stress fractions corresponding to large constituents. Note that we assume the model
from Bridgwater et al. [3] to be a mixture theory model, for which we back compute the
pressure-scaling for the larger constituent of the mixture.

Furthermore, all the gravity-driven segregation models [15, 17, 19, 41] consider
the interaction drag or inter-constituent friction to take the form of Darcy’s law,
which on neglecting diffusive remixing is

β
ν = σ∇(fν)− ρνc(uν − u), (17)

where c is an inter-constituent drag coefficient. The inter-particle surface inter-
action force is given by σ∇fν , thus ensuring that segregation is driven by the
partial normal stress (≈ pressure) gradients. Substituting the expressions for the
drag force (17) into the normal momentum balance equation for constituent type-ν
(11) – neglecting normal acceleration terms – results in relative percolation veloc-
ities between the constituents and the bulk,

ρν(wν − w) = −
fν

c

∂σzz
∂z︸ ︷︷ ︸

normal
stress

gradient

−ρν
gn
c

with ν = s, l. (18)

The above equation illustrates the key idea behind the gravity-driven segrega-
tion models, where the relative velocities, between the constituents and the bulk,
are dependent on the normal stress or pressure gradients induced by gravity. As
ρ∗s = ρ∗l in our size-bidisperse mixture, on substituting the condition of lithostatic
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balance (12) in the above expression, (18) is restated in terms of constituents vol-
ume fraction as

φν(wν − w) =
g cos θ

c
(fν − φν) with ν = s, l. (19)

On the other hand, recently, Hill and Tan [21] presented a theory that explicitly
combines, both, gravity and kinetic-stress driven mechanisms by modifying the
interspecies drag as below

β
ν = σcon

zz
∂

∂z
fcon,ν + σkin

zz
∂

∂z
fkin,ν − ρνc(uν − u), (20)

where σcon
zz and σkin

zz denotes the contact and kinetic stress3. Similarly, substituting
the above Fan-Hill expression for the drag force (20) into the normal momentum
balance equation for constituent type-ν (11) results in the relative percolation
velocities as

ρν(wν−w) =
fcon,ν − fkin,ν

c

∂σkin
zz

∂z︸ ︷︷ ︸
Kinetic
stress

gradient

−
fcon,ν

c

∂σzz
∂z︸ ︷︷ ︸

normal
stress

gradient

−ρν
gn
c

with ν = s, l. (21)

Thus, the above equation indicates that the relative percolation velocities responsi-
ble for segregation, are dependent on, both, the kinetic stress and the total normal
stress gradient. On further simplification, (21) is restated as

φν(wν − w) =
fcon,ν − fkin,ν

cρ

∂σkin
zz

∂z
+
g cos θ

c
(fcon,ν − φν) with ν = s, l. (22)

Moreover, from the above equation, one could also define a dimensionless number
as a ratio of its first and second term as

V̂r =
fcon,ν − fkin,ν

fcon,ν − φν

1

ρg cos θ

∂σk
zz

∂z
. (23)

The above dimensionless (V̂r) number can also be looked at as a ratio of the kinetic
and normal stress gradients, ∂σkin

zz /∂z and ∂σzz/∂z. Thus, allowing us to measure
the relative strengths of the two segregation mechanisms.

For gravity-driven mechanism, substituting the constituents percolation veloc-
ity (19), e.g. for ν = s, in the mass balance equation (9)1, gives us back the earlier
stated segregation governing equation in terms of the volume fraction of type-s,
without accounting for diffusive remixing,

∂φ

∂t
+∇ · (φu)−

∂

∂z
(qF (φ)) = 0. (24)

Note that the form of segregation flux, F (φ), is dependent on the choice of the
pressure scaling functions, fν , see the works of [15, 17, 41].

In the following sections, we verify and compare the existing forms of scal-
ing functions, listed in Table 2 and Table 3, which subdivide the bulk pressure
among the constituents. This is done by utilising information rich discrete particle
simulations, which are set up as described in following section.

3 For details regarding the contact and kinetic stress and its corresponding stress fractions,
fcon,ν and fkin,ν , please see Sec. 4.



12 Tunuguntla et al.

3 Simulation setup

Fully three-dimensional (3D) discrete particle simulations (DPM) are used, as an
alternative to experiments, to investigate segregation dynamics in a size-bidisperse
mixture flowing over inclined channels. The simulations are set up in our in-house
open-source particle solver, MercuryDPM [36,37,39].

To begin with, we consider a cuboidal box inclined at 26◦ to the horizontal and
is periodic in x- and y-direction. The box has dimensions L ×W ×H = 30dm ×
10dm×10dm, where dm is the mean particle diameter defined as dm = φsds+φ

ldl.
To create a rough base (bottom), we fill the box with a randomly distributed set of
particles with uniform diameter dm and simulate them until a static layer of about
12 particles thickness is produced. Then a slice of particles with centres between
z ∈ [9.3, 11]dm is taken and translated 11 mean particle diameters downwards,
to form the rough base of the box. To ensure no flowing particles fall through
the base, a solid wall is placed underneath this static layer. Once the rough base
is created, the box is inclined and filled with a homogeneously mixed bi-disperse
mixture of particle diameters ds and dl and equal material densities, i.e. ρs∗ = ρl∗,
as illustrated in Fig. 1; see Weinhart et al. [46] for more details.

In our DPM simulations, we non-dimensionalise the parameters such that the
mean particle diameter d̂m = 1, the mean particle mass m̂m = 1, the magnitude
of gravity ĝ = 1. This implies that the mean particle density ρ̂m = m̂m/V̂m = 6/π

and the mean particle volume V̂m = π(d̂m)3/6. The non-dimensional quantities
are denoted by ‘̂’ . In this manuscript, we consider three particular bidisperse
mixtures with ŝ = dl/ds = {1.3, 1.5, 1.7} without any size distribution around its
particle size. Hence, the use of term perfectly in the subtitle of the manuscript.

Finally, we fill the box with the size-bidisperse mixture comprising

Ns =
φsV̂box

d̂s
3

and Nl =
φlV̂box

d̂l
3

(25)

particles of species type-s and type-l with V̂box = 30 × 10 × 10 being the non-
dimensional volume of the box. The formulae in (25) enforce (i) the dimensionless

flow height Ĥ to be the same in simulations, when the particle size-ratio is varied
and (ii) the ratio of the total volume of species type-s over the total volume of
the particles to be φs, see appendix A for details. Using (25) with homogeneous
mixture initial conditions (randomly mixed) and equal particle volume fraction
φs = φl = 0.5, DPM simulations for different values of ŝ are carried out. For the
given box volume and size-ratios, the flow thickness is approximately 16 mean
particle diameters.

Furthermore, a linear spring-dashpot model is used, where the spring stiffness
and dissipation for each collision is chosen such that the collision/contact time
tc = 0.005

√
dm/g and the coefficient of restitution rc = 0.88 are constant. The

microscopic sliding friction coefficient is taken to be 0.5 and no rolling friction is
considered. More details about the model can be found in [7, 24, 46]. Besides the
contact model, we use the velocity-Verlet time-stepping algorithm.

Once the particle size-ratio, total number of particles and the contact model
parameters are given as an input, the particles are inserted into the box with
dimensions V̂box = 30 × 10 × H where H is defined as (Ns + Nl)/300. If the
inserted particle at any position overlaps with another particle, the insertion is
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rejected and the insertion domain is enlarged by increasing H to H + 0.01 to
ensure that there is enough volume for all the particles. Thus, leading to a loosely
packed mixture initially. Once the simulation starts, the particles compact enough,
see Fig. 1, giving the particles enough energy to initialise flow. For more details
see Weinhart et al. [46].

Given the particle simulations are setup in the above described manner, we still
need to extract continuum fields to compare different forms of stress fractions, fν ,
listed in Table 2 or Table 3. This is the focus of the following section, i.e. how to
perform the micro-macro step accurately?

4 Micro to Macro: coarse-graining (CG)

Compared to other, simpler methods of averaging such as binning or the method of
planes, the coarse-graining method has the following advantages: (i) the resulting
macroscopic fields exactly satisfy the equations of continuum mechanics, even near
the base of the flow, see [47], (ii) the particles are neither assumed to be spherical
or rigid, (iii) the resulting fields are even valid for a single particle, as no averaging
over an ensemble of particles is required, (iv) the fields are determine at every
point in space, not just at the centre of averaging cells as in the case of binning
and (v) in a contact between different types of particles i.e. large and small here,
the stress-partition is clearly defined. However, the coarse-graining method does
assume (i) each particle pair to have a single point of contact, i.e. the particles
are convex in shape. (ii) that the contact area can be replaced by a contact point,
implying the particles are not too soft. (iii) collisions are not instantaneous (i.e.,
particles cannot be perfectly rigid).

Considering the above advantages and assumptions, in this section, we briefly
elucidate the idea behind the coarse-graining technique and, more importantly,
the mapping expressions, which will be employed to extract continuum partial
densities, velocities, stresses and the interaction force density (interspecies drag
force) from the discrete particle simulations setup in Sec. 3. For more information
regarding the technique, please see Tunuguntla et al. [42], where they not only
derive the coarse-graining expressions systematically but also focus on its applica-
tion in detail. More importantly, they also present a general mixture-theory based
CG framework that can be easily extended to polydisperse mixtures without any
loss of generality.

4.1 Nomenclature

Given we have three different types of constituents: (bulk) type-s, (bulk) type-l
and boundary, whose interstitial pore-space is filled with a zero-density passive
fluid, see Fig. 1. Each particle i ∈ F , where F := Fs ∪F l ∪Fb, will have a radius
ai, whose centre of mass is located at ri with mass mi and velocity vi. The total
force f i (26), acting on a particle i ∈ F is computed by summing the forces f ij
due to interactions with the particles of the same type j ∈ Fν and other type,
j ∈ F/Fν , and body forces bi, e.g., gravitational forces (mig).
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vi,mi vj ,mj

nij

cij

ri
rj

bij

Fig. 2 An illustration of two interacting constituents i and j, where the interaction is quan-
tified by a certain amount of overlap δij . If ri and rj denote the particles’ centre of mass then
we define the contact vector rij = ri − rj , the contact point cij = ri + (ai − δij/2)nij and a
branch vector bij = ri − cij .

f i =
∑

j∈Fν

j 6=i

f ij +
∑

j∈F/Fν

f ij + bi, for all i ∈ F

and ν = s, l, b.

(26)

For each constituent pair, i and j, we define a contact vector rij = ri − rj , an
overlap δij = max(ai+aj−rij ·nij ,0), where nij is a unit vector pointing from j to
i, nij = rij/|rij |. Furthermore, we define a contact point cij = ri+(ai−δij/2)nij

and a branch vector bij = ri−cij , see Fig. 2. Irrespective of the size of constituent
i and j, for simplicity, we place the contact point, cij , in the centre of the contact
area formed by an overlap, δij , which for small overlaps has a negligible effect on
particle dynamics.

In the following sections, we first present the idea of coarse-graining (CG) and
then list the CG expressions for the partial and bulk quantities, using the above
nomenclature.

4.2 Idea behind coarse-graining

To illustrate the idea, we consider the partial microscopic (point) mass density for
a system (in a zero-density passive fluid) at point r and time t. From statistical
mechanics, it is given as

ρν,mic(r, t) =
∑

i∈Fν

miδ(r− ri(t)), (27)
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where δ(r) is the Dirac delta function in R
3. This definition complies with the

basic requirement that the integral of the mass density over a volume in space
equals the mass of all the particles in this volume.

To extract the partial macroscopic mass density field, ρν(r, t), the partial mi-
croscopic mass density (27) is convolved with a spatial coarse-graining function
ψ(r), e.g. a Heaviside, Gaussian or a class of Lucy polynomials4. Thus, leading to

ρν(r, t) :=

∫

R3

ρν,micψ(r− r′)dr′,

:=
∑

i∈Fν

miψ(r− ri(t)) =
∑

i∈Fν

miψi.

(28)

The result is equivalent to replacing the delta-function with a spatial coarse-
graining function (that is positive semi-definite, integrable, and has finite sup-
port), ψ(r), also known as a smoothing function. For simplicity, seen later, we
define ψi = ψ(r− ri(t)).

4.3 Coarse-graining expressions: novel micro-macro map

Using the same idea as explained in the previous section, expressions for partial
quantities corresponding to constituent type-ν are

Density: ρν =
∑

i∈Fν

miψi,

Momentum: Pν =
∑

i∈Fν

miviψi,

Velocity: uν = Pν/ρν ,

Total partial stress: σν = σkin,ν + σcon,ν ,

Kinetic stress: σ
kin,ν =

∑

i∈Fν

miv
′
iv

′
iψi,

Contact stress: σ
con,ν =

∑

i∈Fν

∑

j∈Fν

j 6=i

f ij bijΨij ++
∑

i∈Fν

∑

j∈F/Fν

f ij bijΨij ,

(29)

where in the kinetic stress expression, v′
i is the fluctuation velocity of particle i,

defined as v′
i(r, t) = u(r, t)− vi(t). Furthermore, in the contact stress expression,

bij is the, particle centre to contact point, branch vector as illustrated in Fig. 2.

Ψij denotes a line integral along the branch vector bij , Ψij =
∫ 1

0
ψ(r−ri+sbij)ds,

which ensures the distribution of the force, see (26), between two constituents i
and j to the partial stresses to be proportional to the length of the branch vectors.
In other words, the stresses are distributed proportionally, based on the fraction of
the branch vectors contained within each constituent. Thus, for contacts between
a small and a large constituent, the larger-sized constituent receives a larger share
of the stress. All the above partial quantities are derived such that both the mass
and momentum balance laws are exactly satisfied.

4 For more details regarding the coarse-graining functions see Tunuguntla et al. [42].
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ẑcom

t̂dpm
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2.0 x 1031.51.00.5

③
③ ③ ③

t̂n−1

t̂n
t̂n+1

t̂n+2

Fig. 3 For bidisperse mixture of particle size-ratio ŝ = 1.3, evolution of the vertical centre of
mass for both large (solid line) and small (dotted line) particles from unsteady to steady state
is illustrated. Here, t̂n−1 to t̂n+2 denote a range of points in time about which we would like
to temporally average. Note that the points above are just to illustrate, in practice we average
around more points than shown above.

On utilising the above CG expressions, stated in Sec. 4.3, the following section
focusses on extracting the continuum fields from, both, the transient and steady
particle data of our size-bidisperse mixtures.

5 Applying coarse-graining to the DPM simulations

In order to compare and contrast the existing mixture theory segregation mod-
els, one needs to construct the continuum fields to compute the stress fractions
or pressure-scalings listed in Table 2 or Table 3. Using the same coarse-graining
expressions stated in Sec. 4.3, Weinhart et al [45] performed the micro-macro step
on their discrete particle data corresponding to steady state alone. Although their
findings did illustrate important aspects of particle segregation, not much was in-
ferred regarding the transient dynamics itself. Thereby, to understand transient
segregation dynamics and also see how the stress distribution on each of the mix-
ture constituents varies as a function of, both, space and time, micro-macro step
must be performed on unsteady discrete particle data as well. This is the prime
focus of this section, how to extract continuum fields from the available unsteady
particle data?

In the simulations setup in Sec. 3, the temporal derivatives ∂t(ρ
ν) and ∂t(ρ

νuν)
vanish after a short time interval t̂ ∈ [0, t̂e ≈ 50], and thereafter the slow process
of segregation dominates the transient flow dynamics. For the given particle size-
ratios, this transient flow behaviour or the process of segregation approximately
happens within the first 2000 DPM time units. For example, see Fig. 3 where for
size-ratio ŝ = 1.3 the vertical centre of mass of, both, large and small particles
is tracked. Therefore, we focus on the time interval before the process of particle
segregation has reached a steady state, i.e. when t̂ ∈ [50, 2000], where ‘ˆ’ de-
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notes non-dimensional quantities such as t̂ = t/
√
dm/g. For the purpose of our

investigation, particle data is stored at every 5000 simulation time steps 5.
As in Tunuguntla et al. [42], we use the coarse-graining expressions of Sec. 4.3 to

spatially coarse-grain the particle data. For our analysis, we need continuum fields
which are a function of, both, time (t̂) and flow depth (ẑ). To do so, for a given
spatial coarse-graining scale (ŵ = w/dm), we, first, spatially average the extracted
continuum fields in x- and y-direction. Thus, resulting in averaged quantities,
ζ̄(t̂, ẑ), as a function of both time t̂ and flow depth ẑ = z/dm. However, to construct
macroscopic continuum fields in the temporal direction, we further need to average
ζ̄(t̂, ẑ) temporally over a time interval

[
t̂− ŵt, t̂+ ŵt

]
, where ŵt is defined as the

temporal averaging scale.
Given a spatial (ŵ) and temporal (ŵt) averaging scale, temporal averaging of

any averaged field ζ̄(t̂, ẑ) can be defined as

¯̄ζ(t̂, ẑ) =
1

2ŵt

t̂+ŵt∫

t̂−ŵt

ζ̄(t̃, ẑ)dt̃, for a given ŵ and ŵt, (30)

where t̂ denotes the point in time about which we would like to average, and ŵt

determines the width of the averaging time interval,
[
t̂− ŵt, t̂+ ŵt

]
, see Fig. 3.

As seen in (30), the coarse-graining expressions are completely dependent upon,
both, spatial and temporal coarse-graining scales. Thereby, in Tunuguntla et al. [42]
we focussed on determining optimal spatial and temporal coarse-graining scales,
especially for segregating flows over inclined channels. Given these are already
determined, we chose the spatial and temporal coarse-graining scale as ŵ = 0.5
and ŵt = 50. With these at hand, coarse-grained fields are constructed at different
times t̂n ∈ [100, 3000], see Fig. 3, for particle data corresponding to all three size-
ratios.

Given these continuum fields, the following section brings us to the much
awaited section of this manuscript., where we illustrate and discuss our obser-
vations.

6 Analysis and discussion

With coarse-grained quantities available at the transient stages of particle seg-
regation, we initially begin by looking at the evolution of the local solid volume
fraction of, both, type-s and type-l constituents as a function of the flow-depth.

6.1 Local mass fractions

From the partial density (28), the partial mass fraction is defined as

Λν =
ρν

ρνp
, with ν = s, l, (31)

5 More particle data can be used for coarse-graining, if the coarse-graining is applied while
the simulation is running (live-statistics); however, this is time consuming and was not deemed
necessary for this study.
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Fig. 4 Illustrates the evolution of local volume fraction, of the bulk (Λ) and the two mixture constituents (Λs &Λl), as a function of time and flow
depth, z/dm. Each row corresponds to a mixture of a particular size-ratio (a) ŝ = 1.3 (b) ŝ = 1.5 (c) ŝ = 1.7.
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where ρνp is the (constant) material density of constituent type-ν. The bulk mass
fraction is defined such that Λ = Λ1 + Λ2. Note that for constituents of equal
density, as is the case here, the partial mass fraction Λν is equal to the partial
volume fraction φν .

Utilising these expressions, for ŝ = {1.3, 1.5, 1.7}, Fig. 4 illustrates the evolution
of local mass fraction for, both, the bulk and the mixture constituents. As seen,
flows segregate faster with an increase in the particle size-ratio. Moreover, as the
flow segregates, a pure layer of small particles develops at the base. Right above
this layer, Λl shows an oscillating behaviour at tn = [700, 2000, 3000] (Fig. 4),
indicating that layers of large particles develop on the small particle bed. Once
the flow is fully segregated, at tn = 3000, only a single layer right above the layer
of pure small particles remains, see the circle highlighting this in the plots in the
rightmost column of Fig. 4(a)-(c). This might be an artefact of using monodisperse
constituents, i.e. no size distribution around ds or dl. Apart from these oscillations,
Λl increases steadily towards the free-surface, forming a layer of large particles at
the free-surface.

6.2 Transient vs. steady state analysis

As a step towards comparing the existing forms of stress fractions or pressure-
scalings, listed in Table 2 or Table 3, we first utilise the computed total bulk and
partial normal stresses, where

σzz = σcon
zz + σkin

zz and σν
zz = σcon,ν

zz + σkin,ν
zz . (32)

With the coarse-grained normal stress fields at hand, we first construct the total
partial stress fractions as

fν =
σν
zz

σzz
with ν = s, l, (33)

and then compute the partial stress fractions corresponding to the contact and
kinetic stresses as

fcon,ν =
σcon,ν
zz

σcon
zz

and fkin,ν =
σkin,ν
zz

σkin
zz

with ν = s, l. (34)

Note, that from (34) and (32) it follows that fν 6= fcon,ν + fkin,ν .
The stress fractions determine the amount of normal stresses to be distributed

among the small and large constituents. In gravity-driven segregation models, seg-
regation is driven by the pressure gradient which in turn is scaled by the difference
between the total partial stress fraction fν and the partial volume fraction φν , i.e.
fν −φν , see (19). On the other hand, in the mechanism proposed by Hill and Tan,
(22) implies that it is the difference between the contact and kinetic partial stress
fractions (fcon,ν − fkin,ν) and (fcon,ν − φν) which scales the strength of either
of the stress gradients, ∂σkin

zz /∂z and ∂σzz/∂z. If —(fcon,ν − fkin,ν)∂σkin
zz /∂z—

> —(fcon,ν − φν)∂σzz/∂z—, segregation is majorly driven by gradient in kinetic
stress. If not, then segregation is driven by the pressure gradients, as seen in (22).
This is where our dimensionless number (23) comes into picture. Moreover, on
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re-examining (19) and (22), we also see that the pressure gradients are scaled by
two pre-factors (fν − φν) or (fcon,ν − φν), respectively.

To distinguish or determine the profiles of these different pre-factors listed
above, we plot the profiles of fν −φν , fcon,ν −φν , fkin,ν −φν and fcon,ν −fkin,ν ,
for different particle size-ratios ŝ := {1..3, 1.5, 1.7}, in Fig. 5 - Fig. 7. The plots are
colour-coded based on the flow depth and the markers ◦ and ⋄ denote large and
small constituents. When closely observed, the plots illustrate the evolving profiles
of these pre-factors. Thus, allowing us to improve our understanding regarding the
forces behind segregation in size-based segregation in inclined channel flows.

The pre-factors or the relative stress fractions of the large and small con-
stituents shown in Fig. 5 - Fig. 7 are point symmetric, as fs = −f l and φs = 1−φl.
In the initial stages of segregation, i.e. at t̂n = 100 to 400 DPM time units, both,
the relative total and contact partial stress fraction profiles look very similar, com-
plex and mostly concentrated around a small area between 0.25 < φν < 0.75, with
values very close to zero except near the free-surface. This indicates that the frac-
tion of the total and contact stress, (σzz) and (σcon

zz ), bore by the large and small
constituents is nearly the same as its local volume fraction, φν . Therefore, one
can neglect fcon,ν −φν , such that fcon,ν ≈ φν . Note, this approximation was also
previously used in the work of Hill and Tan [21]. By making this approximation,
it gives cleaner data to fit for the kinetic-stress mechanism; as it removes a lot of
complex fine structure in the fcon,ν profiles, which we believe may be artefacts of
the perfectly bidispersed simulations we considered here. On the other hand, the
profiles of the relative kinetic partial stress fractions (fkin,ν − φν), correspond-
ing to both large and small constituents, are significantly lower/higher than their
local volume fractions, φν , in sharp contrast to their respective contact or total
stress fraction profiles. Although the points near the free-surface (red squares and
circles) do not exactly lie on an initially formed curve, as seen in the third col-
umn of each timestamp in Fig. 5-Fig. 7, the values in the bulk and base of the
flow (black, sky-blue, burnt-orange squares and circles) align themselves onto a
different non-linear curve.

As the process of segregation progresses, t̂n = 700 to 2000, the relative total
and contact partial stress fractions appear to have unfurled from their complicated
initial profiles to a much more structured one. The initially strong oscillations ob-
served, near the free-surface (red circles and diamonds), in the profiles of fν − φν

and fcon,ν − φν , disappear over time and the high concentration of data points
observed at intermediate volume fractions, 0.25 < φ < 0.75 initially, also resolve
over time. However, the fraction of the total and contact stress, (σzz) and (σcon

zz ),
bore by the large and small constituents is still nearly the same as its local volume
fraction. Moreover, when closely observed, the profiles of relative kinetic stress
fraction (fkin,ν − φν) and (fcon,ν − fkin,ν) stay identical throughout the tran-
sient stages of segregation, i.e. the amount of kinetic stress bore by the small and
large particles remains the same during the process of segregation (overlooking the
points near the free-surface). Strikingly, this is also true when compared with the
corresponding profile in steady state at t̂n = 3000. Thus, based on the illustrated
profiles in Fig. 5 - Fig. 7, it implies that in a size-bidisperse mixture with given
particle size-ratios, the smaller particles support a fraction of the kinetic stress
larger than their volume fraction, as fcon,ν ≈ φν . Thereby, complementing the
findings of Weinhart et al [45] and Hill and Tan [21].
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Fig. 5 Relative partial stress fractions at different times/stages of segregation. Diamonds (sky-blue) and circles (burnt-orange) correspond to small and
large constituents, respectively. The plots are further colour-coded based on the flow depth, values corresponding to points near the base (z/dm ≤ 2.0)
are denoted as black diamonds or circles. Similarly, values corresponding to points near the free-surface (z/dm ≥ 15.0) are denoted as red diamonds or
circles.
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Fig. 6 Relative partial stress fractions at different times/stages of segregation. Diamonds (sky-blue) and circles (burnt-orange) correspond to small and
large constituents, respectively. The plots are further colour-coded based on the flow depth, values corresponding to points near the base (z/dm ≤ 2.0)
are denoted as black diamonds or circles. Similarly, values corresponding to points near the free-surface (z/dm ≥ 15.0) are denoted as red diamonds or
circles.
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Fig. 7 Relative partial stress fractions at different times/stages of segregation. Diamonds (sky-blue) and circles (burnt-orange) correspond to small and
large constituents, respectively. The plots are further colour-coded based on the flow depth, values corresponding to points near the base (z/dm ≤ 2.0)
are denoted as black diamonds or circles. Similarly, values corresponding to points near the free-surface (z/dm ≥ 15.0) are denoted as red diamonds or
circles.
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Fig. 8 Illustrates the relative partial stress fractions after the flows have fully segregated, i.e.
when the flow is already in a steady state. The plots are colour coded based on the flow depth,
values corresponding to points near the base (z/dm ≤ 2.0) are denoted as black diamonds
or circles. Similarly, values corresponding to points near the free-surface (z/dm ≥ 15.0) are
denoted as red diamonds or circles. Here, diamonds and circles correspond to small (sky-blue)
and large (burnt orange) constituents. Note: We assume particle segregation to have reached
steady state, when the vertical centre of masses of, both, the large and small particles do not
vary in time.

Moreover, Fig. 8 further compares the steady state profiles of relative kinetic
stress fraction (fkin,ν−φν) and (fcon,ν−fkin,ν) for increasing particle size-ratios.
As the particle size-ratio increases, the smaller sized constituents support larger
fraction of the kinetic stress and, interestingly, we also observe that the relative
kinetic stress fractions become more asymmetric with the increase in particle size-
ratio. However, more detailed study is required to explain this asymmetry.

6.3 Comparison of segregation models

In the previous section, we closely looked at the relative stress fractions, also
known as the pre-factors in (19) and (22), computed from the simulations of a
size-bidisperse mixture flowing over an inclined channel. In this section, we utilise
these coarse-grained profiles and compare them with the existing theoretical forms
of stress fractions that are listed in Table 2 and Table 3.

Given this, at t̂n = 3000, we compared the total partial stress fraction profiles
corresponding to the large constituents with the scalings listed in Table 3, see
Fig. 9. As illustrated, with b = 1, γ = 0.9 and ŝ = {1.3, 1.5, 1.7}, none of the
expressions for the stress fractions seem to match the profiles computed from the
particle simulations, (f l

sim). Note that the values of b and γ could be modified
such the proposed functional forms are closer to the relative total partial scaling
profiles. However, this would not be of much help as the relative total partial scaling
profiles obtained from the simulations (f l

sim), for different bidisperse mixtures, is
approximately the same as its local volume fraction, φν . Thus, implying negligible
relative percolation velocity which in turn implies very weak segregation, see (19).
Thereby, forcing us to ask a very simple question: How do these gravity-driven
models even work, when none of the currently proposed scaling forms match in
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Fig. 9 Compares the relative total partial pressure-scalings (fν −φν), corresponding to large
constituents (ν = l), of different theoretical models with the one obtained from our simulation,
Sim. Here, GT , GG, Marks and TT , correspond to the scalings utilised in the gravity-driven
segregation models of Gray and Thornton [19], Gajjar and Gray [15], Marks et al. [26] and
Tunuguntla et al. [41] models whereas BW corresponds to the scaling back computed from
the model of Bridgwater et al. [3]. The results correspond to size-bidisperse simulation with
particle size-ratio (a) ŝ = 1.3 (b) ŝ = 1.5 and (c) ŝ = 1.7. Note that we used a fixed set of
fitting parameters, i.e. b = 1 in the profiles corresponding to GT and GG, with γ = 0.9 and
Aγ = 1.6042 in the profile corresponding to GG.

Fig. 9? Even if they do, which of them is relatively good at quantitatively predicting
particle segregation?

6.4 The kinetic-stress model

From the previous sections, we can infer that smaller particles support a fraction of
the kinetic-stress larger than their local volume fraction. Given that, we postulate
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Fig. 10 For small constituents, the above plot illustrates a comparison of relative partial
kinetic stress fractions between the ones obtained from simulation and the one computed using
the functional forms listed in Table 4. As seen in (a) for ŝ = 1.3, with b = 0.35, Aγ = 0.425
and γ = 0.45 (b) for ŝ = 1.5, with b = 0.5, Aγ = 0.65 and γ = 0.45 and (c) ŝ = 1.7, with
b = 0.68, Aγ = 0.85 and γ = 0.45, the forms suggested by Gray and Thornton (GT) [19] and
Gajjar and Gray (GG) [15] appear to closely capture the shape of the profile obtained from
our simulation.

the intrinsic partial kinetic stress fractions (fkin,s∗) to take the following form

fkin,ν∗ := 1 +Bkin,ν(1− φν) with ν = s, l, (35)

where Bkin,ν , for example when ν = s, takes the form corresponding to the one
for the larger constituent listed in Table 3. Basically, we imply that Bkin,s := Bl

as listed in Table 4. By utilising these functional forms, in Fig. 10 we make a
comparison between the postulated forms of partial kinetic stress fractions and the
one obtained from our particle simulations. When looked upon closely, for a chosen
set of fitting parameters, the functional forms proposed by Gray and Thornton and
Gajjar and Gray match well with the ones computed from the particle simulations.
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Model fkin,s∗ Bkin,s[φ]

Gray & Thornton [19] 1 + bφ b (constant)

Marks et al. [26]
ŝ

φ+ ŝ(1− φ)
−

1− ŝ

φ+ ŝ(1− φ)

Tunuguntla et al. [41]
ŝ3

φ+ ŝ3(1− φ)
−

1− ŝ3

φ+ ŝ3(1− φ)

Gajjar & Gray [15] 1 + bAγφ(1 − γφ) bAγ(1 − γφ)

Bridgwater et al. [3] 1 + φ2 φ

Table 4 Functional forms for partial intrinsic kinetic stress fractions corresponding to small
constituents.

In fact, with the correctly chosen fitting parameters, the form proposed Gajjar and
Gray perfectly matches the relative partial kinetic stress fraction obtained from
the simulations. Although the scaling proposed by Marks et al. incorporates the
particle size-ratio in its suggested form, it peaks at a different value of φ, see
Fig. 10, when compared to the one obtained from simulation.

As a result, one could say that the gravity-driven segregation models work
because the suggested functional forms for total partial stress fractions capture the
shape of the partial kinetic stress fraction profiles obtained from the simulations.
They implicitly support the fact that smaller particles support a fraction of kinetic
stress larger than their volume fractions. As seen, three out of the four suggested
functional forms are able to capture the segregation dynamics, with the closest
being the form suggested by Gajjar and Gray [15]. However, there is still scope for
work to be carried out in this direction, where fundamental changes are needed to
be made in the basis upon which the mixture models are constructed. Moreover,
on a different note, it also raises the interesting question of why did the model of
Tununguntla et. al. best determine the zero segregation line [41] if this model is
incorrectly capturing the details of the stress distribution.

7 Summary and conclusions

In this work, we have reviewed the different segregation models that have recently
been developed and have also defined a common unifying notation that allows for
different models to be easily compared and contrasted.

In order to do so, we utilise particle simulations combined with an advance
micro-macro tool, called coarse-graining, to analysis the different assumptions
made in these models. For the first time, we analysis data corresponding to tran-
sient stages of a segregating flow rather than simply using data corresponding to
steady state.

Through our investigation, we found the following key findings

– The kinetic stress bore by the large and small constituents remains the same
during the whole process of segregation, except near the free-surface of the flow
where we observe some fluctuations in the initial stages of the flow.

– Near the free-surface of the flow, initially the stress (contact and kinetic) pro-
files are different; but, gradually they relax onto the steady-profile. This process
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happens from the centre outwards, i.e., the closer your location to the centre
the quickly the stress relaxes to the steady-state value.

– The contact stress has a much more complicated evolution; however, this seems
to be associated with layering effects, that is present in the early stages of
segregation. These layers slowly melt as time progress.

– We confirm as previously reported by Weinhart et. al. [45] and Hill and Tan [21]
that, for the given particle size-ratios, the smaller constituents support a larger
fraction of the normal kinetic-stress.

– With rightly chosen set of fitting parameters, the shape of the partial kinetic
stress fraction is best captured by the functional form suggested by Gajjar and
Gray [15].

– The measured relative stress fractions are asymmetric as observed in the ex-
periments of van der Vaart et al. [44]. However, they considered varying fill
fractions and here we consider varying particle size-ratios. Moreover, the asym-
metry increases with the increase in particle size-ratio.

The work of this paper could be extended and improved in several ways:

– Firstly the strong layer we observed in the earlier stages of segregation, i.e.
earlier time data, may be due to the use of a perfectly bi-dispersed mixture.
Thereby, a small size distribution around two distinct mean values should be
used.

– Also the flows used here are of intermediate thickness; and deeper flows should
be used to see the effect of absolute depth.

– None of the partial stress fractions suggested in the literature match the simula-
tion results; however, three of the forms suggested, do closely match the profile
of the kinetic-stress fraction obtained from the simulation. So this opens the
question such as what is the correct functional form? More interestingly, why
did the form of Tunuguntla et. al. [41] capture the zero-segregating line so well?

– Moreover, the effect of basal roughness and varying fill concentrations on the
stress fractions also needs to be studied and included in the theoretical models.

It is clear that their still remains work do be done even for the simple case
of size-bidisperse segregation in flows over simple inclined planes. Many different
authors have recently made signification contributions to this topic and we believe
the solution to fully understanding segregation will require the combination of
several of these ideas. Therefore we hope this paper will serve as a useful reference
point to understand and compare these distinct models as they often use different
and inconsistent notation (relative to each other).
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A How to determine the number of particles in our DPMs?

We consider a cuboidal box, periodic in x- and y-direction, inclined at 26◦ to the horizontal.
The box has dimensions L×W ×H = 20dm × 10dm × 10dm and is filled up with a bidisperse
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mixture particles upto a flow height of H occupying a total particle volume of V p with a
packing fraction of π/6,

V p = (π/6)LWH, V p
s = φV p, V p

l = (1− φ)V p. (36)

Hence, V p
s and V p

l is the volume occupied by all the particles of species type-s and -l respec-
tively, which are taken to be equal for the simulations presented here, i.e., φ = 0.5. Below, we
non-dimensionalise the particle diameter of species type-s and -l, and the mixture volumes,
(36), as

ds = dmd̂s , dl = dmd̂l , (L,W,H) = dm(L̂, Ŵ , Ĥ),

V p = d3mV̂
p with V̂ p = (π/6)L̂Ŵ Ĥ , V p

s = φV̂ p , V p
l = (1− φ)V̂ p.

(37)

Simultaneously, the total mass corresponding to the volumes V p
ν , with ν = s, l, and V p is

Mp
ν = ρνV

p
ν with ν = s, l and Mp =Mp

s +Mp
l with ρm =Mp/V p = mm/Vm, (38)

and are non-dimensionalised as

Mp = ρm(dm)3M̂p with M̂p
ν = ρ̂ν V̂

p
ν and ν = s, l. (39)

From the above non-dimensionalised flow quantities, (37) and (39), we determine non-dimensionalised
particle diameters and densities, and the number of particles of species type-s and type-l to be
filled in the box. Thereby, the non-dimensional particle diameters of the two species type are

d̂m = φd̂s + (1− φ)d̂l = 1,

implying d̂s =
1

φ+ (1− φ)ŝ
and d̂l = ŝ d̂s.

(40)

Similarly, the non-dimensional particle densities are given as

ρ̂m =
M̂p

V̂ p
=
φρ̂sV̂ p + (1− φ)ρ̂lV̂

p

V̂ p
= ρ̂1(φ+ (1− φ)r̂ ) = 6/π,

implying ρ̂s =
(6/π)

φ+ (1− φ)r̂
and ρ̂l = r̂ ρ̂s.

(41)

Furthermore, if Ns and Nl are the number of particles of species type-s and type-l in the
mixture, from (39) we have

Ns =
V̂ p
s

(π/6)(d̂s)3
=
φ(π/6)L̂Ŵ Ĥ

(π/6)(d̂s)3
=
φL̂Ŵ Ĥ

(d̂s)3
,

Nl =
V̂ p
2

(π/6)(d̂l)3
=

(1− φ)(π/6)L̂Ŵ Ĥ

(π/6)(d̂l)3
=

(1− φ)L̂Ŵ Ĥ

(d̂l)3
.

(42)
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