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Abstract

The discrete element method is used extensively for the simulation of granular

materials. The great majority of engineering applications require bulk design

parameters to be determined which requires some averaging or coarse graining

techniques to be applied to the particle data from DEM computations. Although

numerous papers have been published on these techniques, we suggest that there

are still significant challenges in the calculation of the continuum quantities from

the particle data. This is chiefly because DEM computes at grain contact level

and at small computational time steps, whereas important engineering events

often occur at much larger timescale, so the question of what temporal and

spatial averaging scales should be adopted is not so clear. This work outlines the

analysis of the influence of the different parameters used in the coarse graining

methods for the projection of discrete quantities into continuum fields.

A silo flow model with internal flow pattern is used as a test case, where

there is stagnant zone, high shear localization zone and a fast core flow zone.

This allows one to study the influence of the averaging length scale and the

temporal scale for the spatial-temporal averaging, and their relationship with

other model parameters as the sampling frequency and simulation time.

Email address: email@uni.edu (Thomas Weinhart)

Preprint submitted to Powder Technology Thursday 5th March, 2015



Keywords: coarse graining, granular systems, DEM, homogenisation

1. Introduction

Granular systems, conglomerations of individual particles, are everywhere in

both industrial and natural settings, from pharmaceutics, mining and handling

of resources and food processing to hazard prediction for landslides or earth-

quakes. The Discrete Element Method (DEM) is a powerful computational tool

to study such systems; the method allows the simulation of tens of millions

of individual particles by solving Newton’s laws for each particle. To visualise

and analyse the granular system, local macroscopic quantities such as density,

velocity and stress can be extracted from the discrete simulation data (particle

positions and velocities, interaction forces and torques).

Several micro-macro transition techniques have been developed to calculate

continuum fields, as shown in [1]. Particularly the stress tensor is of interest:

the techniques include the Irvin-Kirkwood approach [2, 3], which allows the

calculation of the stress tensor within small volumes or bins, or the method

of planes [4]. Here, we use the coarse-graining approach (CG) as described in

[5, 6]. The comparison between the latter two approaches can be found in [7].

The CG method [5, 6] has several advantages over other methods, including:

i) the fields automatically satisfy the conservation equations of continuum me-

chanics, even for single particles (no ensemble averaging is required), and ii) it

is not assumed that the particles are rigid or spherical. The only assumptions

are: each particle pair has a single point of contact, the contact area can be

replaced by a contact point, and collisions are not instantaneous. CG has been

successfully applied to both granular [8] and molecular flows [9].

Note that the word ‘coarse-graining’ is ambiguous: In molecular dynamics,

coarse-graining consists of replacing an atomistic description of a molecule with

a lower-resolution coarse-grained model that averages over the fine details. It is

also used as a synonym for homogenisation methods or the micro-macro transi-

tion. Here, we apply it to the specific micro-macro transition method developed
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in [5, 6].

Coarse-graining involves a spatial scale, w, and, when temporal coarse-

graining is applied, a temporal scale ∆t as well. For very small scales, the

resulting fields can be strongly fluctuate due to insufficient amount of data

at each point; for very large scales, the fields become scale-dependent due to

macroscopic gradients; for appropriately large scales (and a sufficient amount

of data), the field values plateau to scale-independent values [10].

The spatial CG scale was studied in detail in [11] for steady granular chute

flows. Two distinct coarse-graining length scale ranges were identified, where

the fields are almost w-independent. The smaller, sub-particle length scale,

w ≪ d, resolves details on the particle scale, such as the density and shear

rate fluctuations between particle layers. The larger, particle scale, w ≈ d,

leads to bulk stress, velocity, and density fields in which particle-scale effects

are averaged out, and is thus appropriate to study the macroscopic behaviour.

However these findings only applies to steady state flow condition and may not

be valid for other conditions.

Spatial coarse-graining, however, is often not sufficient to obtain well-defined

macroscopic fields, as the fields can show strong fluctuations over time: In these

cases, temporal coarse-graining is applied, usually by averaging the data over

a time interval ∆t. While ∆t can be arbitrary large in steady situations, it is

unclear how to choose the temporal scale in dynamic situations.

In this study, the technique is applied for the analysis of a silo flow model

with internal flow pattern for the study of the influence of the spatial coarse-

graining parameter. As the silo flow is slowly changing with time, the temporal

scale is investigated as well. We begin by reviewing the spatial coarse-graining

approach in §2. Then the silo flow model is introduced in §3. In §4, the CG

approach is then applied to the silo flow and the resulting field are used to define

the flow regions and determine the flow rheology in the shear band.
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Figure 1: Coarse-graining functions for one space dimension. The cutoffs for Heaviside and

Lucy are chosen as c =
√
3w and c =

√
11.5w, respectively, such that w equals the standard

deviation for all three functions.

2. Statistics

To extract the macroscopic fields, we use the spatial coarse-graining ap-

proach as detailed in Weinhart et al. [8, 12] and references therein, which will

be reviewed in this section.

It is assumed that collisions are not instantaneous, that each particle pair

has at most one contact area, and that each contact area is small enough that it

can be replaced by a single contact point. Thus, the evolution of the system is

described by evaluating Newton’s law of motion, where the force ~fi and torque

~ti acting on particle i is given by the body force ~fb
i and the interaction forces

~fij and torques ~tij with other particles and walls,

~fi = ~fb
i +

N+Nb∑

j=1

~fij , ~ti =

N+Nb∑

j=1

~tij + (~cij − ~ri)× ~fij , (1)

Here, particles are labeled from 1 to N , while walls are labeled from N + 1 to

N+Nb, ~ri is the centre of mass of particle i and ~cij is the contact point between

particles i and j.

2.1. Mass density and velocity

In statistical mechanics, it is assumed that each particle’s mass is located at

its centre. Thus, the microscopic (point) mass density, ρmic, at a point r at time
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t is defined by

ρmic(r, t) =

N∑

i=1

mδ (r− ri(t)) , (2)

where δ(r) is the Dirac delta function.

A macroscopic mass density field can then be extracted by convoluting the

microscopic mass density with a coarse-graining function W(r), which yields

ρ(r, t) =

∫

RD

ρmic(r′, t)W (r′) dr′ =

N∑

i=1

mW (r− ri(t)) , (3)

with D the number of spatial dimensions.

A cut-off Gaussian coarse-graining function is used,

W(r) = V −1
ω exp

(
− r2

2ω2

)
, if r := |r| < c, 0 else, (4)

with coarse-graining width w > 0 and cutoff c = 3w. The constant Vω is chosen

such that the integral over the coarse-graining function is unity,1

∫

RD

W(r) dr = 1, (5)

which is required such that the integral over the density equals the total mass.

The Gaussian function is chosen as it delivers smooth results; the cut-off

is applied to limit the computational expense. However, other coarse-graining

functions are possible, such as Heaviside or Lucy polynomials (see figure 1), as

long as they satisfy equation (5). The resulting coarse-grained fields depend only

weakly on the choice of the coarse-graining function, but the standard deviation

of the coarse graining function σW ≈
√
Dw is the key parameter [6, 13, 11].

Similarly, the coarse-grained momentum density vector p(r, t) is given by

p(r, t) =

N∑

i=1

mviW(r− ri), (6)

where vi is the velocity of particle i. The macroscopic velocity field V(r, t) is

then defined as the ratio of momentum density and mass density fields,

V(r, t) = p(r, t)/ρ(r, t) . (7)

1For three spatial dimensions, Vω = erf( c
√

2w
)−
√

2

π
c
w

exp(−c2

2w2
), and ≈

√
3w is the standard

deviation.
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2.2. Stress

Next, we consider the momentum conservation equation with the aim of

establishing the macroscopic stress field, σαβ . We split the stress

σ = σ
k + σ

c, (8a)

into its kinetic (σk) and contact (σk) contributions

σ
k =

N∑

i=1

mV′
iV

′
iW(r− ri), (8b)

σ
c =

N∑

i=1

N∑

j=i+1

f ijrij

∫ 1

0

W(r− ri + srij) ds (8c)

+

N∑

i=1

N+Nb∑

k=N+1

f ikaik

∫ 1

0

W(r− ri + saik) ds, (8d)

with interaction forces f ij = −f ji, branch vectors rij = ri − rj , and contact-to-

centre vectors aik = ri − cik, where cik denotes the contact point between the

particle i and wall k. Further,

V′
i(r, t) = vi(t)−V(r, t). (9)

is the fluctuation velocity field of particle i. Note that this definition of the

fluctuation velocity is scale dependent for w > 0.1d, thus even for small spatial

scales, as discussed in [14, 11]. Furthermore, the boundary interaction force

density is introduced

t =

N∑

i=1

N+Nb∑

k=N+1

fkiW(r− cik), (10)

which is a measure of the force the particles exert on the wall and has nonzero

values only near the walls.

By design, these newly defined fields satisfy exactly the continuity and mo-

mentum equations [6, 12]

∂tρ+∇ · ~ρV = 0, (11a)

∂t(ρV) +∇ · (ρVV) = ∇ · σ + ρg − t. (11b)

where the short notation ∂t = ∂/∂t is used.
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2.3. Averaging over time and spatial dimensions

Further, time-averaging can be applied to decrease temporal fluctuations.

For that, a uniform distribution function is used,

〈ρ〉t =
1

∆t

∫ t+∆t/2

t−∆t/2

ρ(r, t) dt. (12)

In steady situations, the fields are homogeneous in time and thus time averaging

interval can be arbitrarily large. For unsteady situations, however, the average

value becomes scale-dependent, and time averaging can only be applied over a

sufficiently small interval, as we will investigate further in this paper.

Similarly, the continuum fields can be averaged over the spatial directions in

which the flow is homogeneous. This will be denoted by angled brackets; e.g.,

the average of ρ over the y-direction is given by

〈ρ〉y(x, z, t) =
1

y1 − y0

∫

R

ρ(r, t) dy, (13)

where [y0, y1] = [0, 4]cm denotes the size of the domain. The integration is

applied over the whole domain to capture the tails of the CG functions, which

sometimes extend beyond the domain. To save computation effort and to accu-

rately resolve the integral, this averaging is done analytically by applying the

integral to the coarse graining function directly, i.e.

〈ρ〉y(x, z, t) =
N∑

i=1

mi〈W〉y(x− xi, z − zi, t). (14)

The averaged velocity is then evaluated as

〈V〉y = 〈p〉y/〈ρ〉y. (15)

In Ref. [15] it is shown that the averaged fields still satisfy the mass and mo-

mentum equations, if the averaging is applied in directions where the flow is

homogeneous, and/or if the averaging is carried out over (i) all the direction

from −∞ to ∞ or (ii) via periodic boundary conditions.
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3. DEM modelling of silo flow

Over the last decade, DEM has been increasingly used to model many gran-

ular flow situations involving complex flow patterns that evolve spatially and

temporally. In this type of problems, spatial and temporal averaging take an

important role in the analysis of the results. Here a DEM model of flow from a

flat-bottomed silo has been specifically chosen to study the influence of the spa-

tial and temporal coarse-graining parameters. With a central outlet through the

flat bottom, an internal flow channel develops and evolves over time providing

a rich phenomenological ground for this study.

The flow consists of three distinct zones: A stagnant zone near the side walls,

a zone with high localized shear and a fast core flow zone in the middle of the

silo.

The geometry of the silo model is presented in Figure 2. Periodic boundary

conditions are applied in y-direction, such that the flow is homogeneous in y.

4040

3
0
0

150

Figure 2: Silo geometry (in mm). Dark grey area denotes walls, the light grey area at the

base denotes the outflow. The system is periodic in y-direction.

The model considers 56 241 non-spherical monodisperse particles. Each par-
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ticle is created with two overlapping spheres with centre-centre distance 0.25ds,

where ds is the diameter of the contituent spheres, as shown in Figure 3. For

the purpose of the present study, the particle size d is defined as the diameter

of the volume-equivalent sphere (d = 3.33 mm).

Figure 3: Particle shape.

The Hertz-Mindlin contact model implemented in EDEM R© [16] is used, with

the material properties of the particles: mass density of 950 kg/m3; shear mod-

ulus of 0.1GPa; Poisson’s ratio 0.4. The material properties of the walls are:

shear modulus 10GPa and Poisson’s ratio 0.2. The contact model parameters

for the particle-particle interaction considers a friction coefficient 0.577. and for

the particle-wall interaction a friction coefficient 0.5 is used. The coefficient of

restitution is set to 10−4, but does not have influence in the flow patterns. The

Relative Velocity Dependent (RVD) rolling friction model [17] is used with a

rolling friction coefficient 0.2. The total simulation time is 2.5 s, with a time

step of 1.54 µs and a sampling frequency of 200 Hz.

4. Results

Static, sheared, and fast-flowing zones: Figure 4 shows the evolution of the

particle flow in the silo. The particles are stationary as long as the outlet is

closed, i.e. t < 0.1 s. After the outlet is opened, particles begin to flow out

as flow regime begins to propagate upwards and a nearly steady flow begins to

develop in the centre of the silo; the outflow rate is steady for t > 0.6 s. The

particles near the side walls remain static; this static zone slowly decreases in

size as the silo is emptied. To study the typical flow behaviour, we investigate
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the flow at t = 1.2 s, where the flow is fully developed and 2/3 of the initial

particles still remain in the silo.

(a) t=0.745s

④ ④ ④

x2 x1 x0

(b) t=1.200s (c) t=1.490s (d) t=2.240s

Figure 4: Silo flow evolution.

We can clearly distinguish three zones: (i) a stagnant zone near the side

and bottom wall, (ii) a zone of high shear localization, and (iii) a fast-flowing

core. To study these zones further, we select three points at horizontal positions

x0 = 0 cm, x1 = −3.75 cm, x2 = −6.25 cm and at height z = 10 cm, one from

each zone, to be investigated in detail (see figure 4).

4.1. Averaging over the depth y

Next, we average over the directions, in which the macroscopic fields are

homogeneous. This is the case in the y-direction, in which the domain is periodic

and uniform. We observe that the variations of solid fraction, momentum and

stress in the y-direction are smaller than the standard deviation (not shown).

Thus, all results shown here are averaged over the y-direction.

4.2. Homogeneity in time

To determine an appropriate averaging time interval [t− ∆t
2
, t+ ∆t

2
], we plot

the profiles of instantaneous solid fraction, momentum and downward stress over

time at x0, x1, and x2 in Figure 5. After the silo exit is opened, the velocity
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rapidly increases before settling to a nearly constant rate for 0.75 s < t < 2 s.

During this time interval, all profiles are nearly constant in time in the flowing

core (x0) and the shear zone (x1). In the static zone (x2), the stress decreases

over time, as the silo is emptied, and consequently the solid fraction decreases

slightly.
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Figure 5: Instantaneous solid fraction, momentum and stress profile in the flowing (x0), shear

(x1) and stagnant (x2) zone at height z = 10 cm, averaged over y, with w = d.

In figure 6, the dependence on ∆t of the averaged solid fraction, momentum

and downward stress is presented. The averaged variables in the figures present

stable values for the stagnant and flowing zones for ∆t of up to 1.5s. However,

the shear zone presents a degree of variation especially for the solid fraction, with

a lower variation with ∆t < 1 s and increasing for higher values of ∆t. This can

be explained by the displacement of the shear band during the discharge. For

large values of ∆t, the spatial average in the shear zone (x1) captures particles

out of the shear band, where the solid fraction is higher. The same occurs within

the stagnant zone (x2), where part of the shear band and the initial conditions

is captured for t > 1.8 s.
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Figure 6: Dependence on ∆t of solid fraction (left), momentum (centre) and stress (right) at

flowing (x0), shear (x1) and stagnant (x2) zone, with w = d and t = 1.2 s, averaged over y.

The variation for high values of ∆t can be observed in a better way using the

coefficient of variation (CV) of the averaged variables, as presented in figure 7.

For all three variables, the CV increases gradually until ∆t = 0.5 s, then is

nearly stable for 0.5 s < ∆t ≤ 1.1 s. For higher ∆t s, the CV of the averaged

variables starts to increase, as we average over an interval that includes a sig-

nificant share of non-steady flow, which occurs before t < 0.75 s. For ∆t ≤ 1.1 s,

the CV of solid fraction is negligible (< 0.02), as it does not vary strongly in

time. The CV of momentum is larger, but varies within a narrow range ( 0.1 in

the flowing zone and 0.2 at the shear and static zones), and the same holds for

the stress in the flowing and shear zone ( 0.4). In the stagnant zone, however

the CV of stress (and solid fraction) show a gradual increase for ∆t > 0.5, as

these variables strongly vary within this interval, as shown in figure 5. This

means the chosen time interval should be smaller than 0.5 s.

To select the time interval, the combination with the coarse-graining width

(w) must be considered. In the following section the dependence between both

parameters is analysed.

4.3. Dependence on the coarse-graining width

In order to obtain an accurate representation of the coarse-grained variables,

appropriate choices for the time-averaging interval and the coarse-graining width

are required. To determine the appropriate coarse-graining width we plot the

comparison of the spatio-temporally averaged solid fraction (figure 8), momen-

tum (figure 9) and downward stress (figure 10) for the three sample points with
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Figure 7: Coefficient of variation of ∆t in averaged over y of solid fraction (left), momentum

(centre) and stress (right) at flowing (x0), shear (x1), and stagnant (x2) zone, with w = d

and t = 1.2 s.

different values of the coarse-graining width and time intervals.

In figure 8 an important influence of ∆t and w in the solid fraction is found

for w/d < 0.5, where the computed solid fraction is independent of the range

of temporal and spatial scale chosen. For w/d¿1.5, the solid fraction starts to

change in the stagnant and shear zone. For the flowing core, the time averaged

and instantaneous solid fraction differs for low values of w/d, but converges to

a stable value for w/d ≥ 1.5.

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5 3

〈ν
〉 y

[-
]

w/d [-]

∆t = 0.0
∆t = 0.1
∆t = 0.2
∆t = 0.3
∆t = 0.4
∆t = 0.5
∆t = 0.6

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5 3

〈ν
〉 y

[-
]

w/d [-]

∆t = 0.0
∆t = 0.1
∆t = 0.2
∆t = 0.3
∆t = 0.4
∆t = 0.5
∆t = 0.6

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5 3

〈ν
〉 y

[-
]

w/d [-]

∆t = 0.0
∆t = 0.1
∆t = 0.2
∆t = 0.3
∆t = 0.4
∆t = 0.5
∆t = 0.6

Figure 8: Dependence of solid fraction on w and ∆t in the stagnant (left), shear (centre) and

flowing (right) zone (centred at t=1.2s, averaged over the depth y).

A similar influence of w/d is found for the momentum (figure 9). In this

case the influence on the time interval is higher, particularly in the flowing (x0)

and shear (x1) zones. A noticeable exception is again the instantaneous case

(∆t = 0) which deviates significantly from the others.

For the stress (figure 10), a clear plateau is found between 0.5 < w/d < 1.0
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Figure 9: Dependence of momentum on w and ∆t in the stagnant (left), shear (centre) and

flowing (right) zone (centred at t=1.2s, averaged over the depth y).

for the stagnant zone (x2), where a low influence of ∆t is seen. For the flowing

core (x0) and shear zone (x1), the influence of ∆t is not significant for w/d > 0.5,

whilst a high variation of the value with w is found. This contrasts with the

relatively stable solid fraction with the temporal and spatial scales, revealing the

nature of the problem that whilst solid friction may remain relatively constant in

the shear and core flowing zones in a silo, the stress regimes can vary much more.

Again the instantaneous case (∆t = 0) deviates significantly from the others

which suggests that computing DEM results using an instantaneous snapshot

can lead to erroneous result.
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Figure 10: Dependence of stress on w and ∆t in the stagnant (left), shear (centre) and flowing

(right) zone (centred at t=1.2s, averaged over the depth y).

Based in the previous results, the range of 0.5 < w/d < 1.5 appears to be the

most favourable w/d values to use. Similar plateaus in the coarse-graining width

w/d have been observed in [18, 10, 11, 19] , as discussed in the introduction.

Thus, the coarse-grained fields are scale independent for w = d. For this spatial

scale, it was shown in §4.2 that time-averaging shows that the variables are
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independent of the chosen time interval for ∆t < 1.2 s. However, the variance of

the time-dependent stress in the stagnant zone increases for ∆t > 0.4 s (figure 7).

Therefore ∆t = 0.4 s is selected as the optimal time-averaging interval for this

problem.

After the temporal and spatial averaging parameters are thus chosen, the

coarse-graining technique is used to study the flow pattern in the model as

presented in the following sections.

4.4. Shear band study

Three zones: First, we study the profiles of solid fraction (packing density),

velocity, and shear rate, plotted in figure 11. The fields are averaged in depth

y and over a small time interval 1 s < t < 1.4 s and a coarse-graining width

of w = d is used, as justified above. A resolution of 100 × 60 points in x and

z is chosen to resolve the data spatially. We can clearly distinguish some key

features of the three zones: (i) a stagnant zone near the side and bottom walls,

where the density is high, the velocity nearly vanishes, and the stress increases

with height, as expected from a hydrostatic stress profile (figure 16); (ii) a zone

of high shear localization, combined with a low density (due to dilatancy) and

moderately large stresses; and (iii) a fast flowing core, in which the velocity is

high, but with small shear rates and lower stresses.
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Figure 11: Profile of solid fraction ν (left), momentum |ρv| (centre), and horizontal shear rate

∂xvz (right), averaged over y and 1.0 s < t < 1.4 s with w = d. The three points shown as x1,

x2, x3 in the plot as well as the profile at z = 10 cm, are selected for further analysis.
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Î

-5 0 5
0

5

10

15

20

25

Figure 12: Tensorial shear rate γ̇, horizontal shear rate ∂xvz , and inertial number I = γ̇d√
p/ρp

scaled onto the interval [0, 1] by its maximum at each height, see (16). Data for ν < 0.1 (white

area on the top) is not considered. Dots denote the maxima of the depicted values in the left

and right half of the domain, black contours denote demarcation of the shear band where the

scaled value is less than a tolerance (tol = 0.6). All values averaged over y and 1 ≤ t ≤ 1.4

for w = d.

Shear band: In order to study the shear band in more detail, i.e. the zone

between the static and the flowing region of the granulate, we attempt to define

the location of its centre and width. In figure 12 we show three attempts to define

this zone, using (a) the tensorial shear rate γ̇ = 1

2

√
(∂xvz + ∂zvx)2 + (∂xvx − ∂zvz)2,

(b) the horizontal shear rate ∂xvz, and (c) the inertial number I = γ̇d√
p/ρp

, which

is the tensorial shear rate scaled by the pressure p, particle size d and density

ρp. As the shear rate is rapidly decreasing in height, we scale each quantity by

its maximum at each height z, which is denoted by the hat operator,

.̂(x, z) :=
.(x, z)

maxx .(x, z)
. (16)

While the tensorial shear rate definition is sensitive to both pure and simple

shear, the horizontal shear rate does not take pure shear into account. Thus,

both definitions show non-zero values in the shear band (where simple shear

is active), but the horizontal shear rate vanishes in the lower part of the fast-

flowing core, where the width of the core region contracts towards the orifice,
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causing pure shear.

At first, we define the location of the left and right shear bands, Cl(z)

and Cr(z), by the maxima of each quantity in the left (x ≤ 0) and right half

(x ≥ 0) of the domain; the resulting shear band locations are similar for all three

definitions. Next, we define the shear band as all values for which each scaled

quantity is larger than a given tolerance, which we choose here to be 0.6 (with 1

being the maximum), shown demarcated by the solid lines in figure 12. Here, we

see clear differences between the three definitions: The scaled horizontal shear

rate is only larger than 0.6 in a tight region around the centre of the shear band,

giving a good definition of the shear band throughout the silo. This is also true

for the tensorial shear rate; however, the large values in the lower region of the

flowing zone decreases the quality of the shear band definition. This undesired

effect is intensified if we consider the inertial number, as the pressure p in the

lower flowing zone is much lower than in the shear band, thus increasing the

inertial number there. Therefore we choose to use the horizontal shear rate ∂xvz

for the shear band definition.
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Figure 13: Horizontal shear rate ∂xvz at

z = 0.1 cm averaged over y and 1.0 s < t <

1.4 s for varying coarse graining width w.
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Figure 14: centre and width of the left and

right shear band at z = 0.1 cm for varying

w.

Defining the shear band centre as the location of the maximum (figure 12)

has two disadvantages: Firstly, as the grid resolution is finite (100 points in

x-direction), the centre of the shear band can only be located with an accuracy

of 0.15 cm, resulting in an undesirable stepwise definition. Secondly, the shear
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Figure 15: Fits of the shear band based on (17) for all values (left) and for ∂̂xvz > 0.6 (centre),

as well as a Gaussian fit to (18) (right).

band splits into several arms for small w, as the larger noise in the data can

create local maxima of the shear rate far from the shear band, see figure 13.

To avoid these effects, two other definitions were tested, as shown in figure 15:

Firstly, the centres and widths of the shear bands are defined as the centroids

and the hygroscopic radius in the left and right half plane, respectively, with

∂xvz acting as the mass,

Cl(z) =

∫ 0

x0

∂xvzx dx
∫ 0

x0

∂xvz dx
, Wl(z) =

√√√√
∫ 0

x0

∂xvz(x− Cl)2 dx
∫ 0

x0

∂xvz dx
, (17a)

Cr(z) =

∫ x1

0
∂xvzx dx∫ x1

0
∂xvz dx

, Wr(z) =

√∫ x1

0
∂xvz(x− Cr)2 dx∫ x1

0
∂xvz dx

. (17b)

This produces a smooth definition of the shear band. The centre of the shear

band, however, is badly approximated, as the shear band is asymmetric, with

the peak shear rate close to the outer boundary of the shear band. Therefore,

a second fit was obtained by only considering values for which ∂̂xvz is above

tol = 0.6, producing a good approximation of the shear band; however, the
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width of the shear band is now dependent on the choice of tol.

Therefore, a forth definition of the shear band was chosen, where the centre

and width shear band was defined by fitting ∂xvz by a Gaussian function with

the least squares approximation

min
Cl,Wl,Ml

∫

x≤0∩∂̂xvz>tol

∣∣∣∣∂xvz(x, z)−Ml exp

(
− (x− Cl)

2

2W 2
l

)∣∣∣∣
2

dx (18a)

min
Cr,Wr ,Mr

∫

x≥0∩∂̂xvz>tol

∣∣∣∣∂xvz(x, z)−Mr exp

(
− (x− Cr)

2

2W 2
r

)∣∣∣∣
2

dx, (18b)

As the shear band is not symmetric, we again only consider values for which

∂̂xvz > tol = 0.6; for this definition, however, the shear band width is indepen-

dent of the choice of tol for tol > 0.5.

To show that the shear band is now well-defined, the centre and width lo-

cation of the shear band is plotted for varying coarse-graining widths w in

figure 14. We observe that the both the shear band centre and band width are

nearly stable for 0.2 < w/d < 2, with the centre of the band moving slightly

away from the central axis as w decreases, probably because of a varying shear

gradient in the region.

4.5. Stress analysis

Stress anisotropy: To study the behaviour of the stress, we plot the normal

stresses as well as the shear stress σxz in figure 16. This represents the complete

description of the stress, as the remaining shear stress components are fluctu-

ating around zero and the stress tensor is nearly symmetric. We observe that

the normal stress components differ strongly from each other, with the stress in

downward direction, σzz, being highest and the lateral stress, σxx the weakest.

The stresses in the static zone are the highest stresses and increase with depth,

which indicates that they are governed by the weight of the solid and the friction

on the wall. An arch of higher normal stress σxx extends through the flowing

zone from the top of the static zone (best seen in the σxx plot in figure 16), thus

allowing the flow below the arch to flow at lower pressure.

Stress balance: If we average the third momentum balance equation (11b)

over x, y and t ∈ [1, 1.4] s and assume that the rate of change in momentum is
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Figure 16: Profiles of normal and shear stress components, averaged over y and 1.0 s < t < 1.4 s

with w = d.

negligible, we obtain a balance between the weight of the flow, the downward

normal stress and the force acting on the walls,

gz〈ρ〉xyt = −∂z〈σzzρ〉xyt − 〈tz〉xyt. (19)

This is shown to be valid in Figure 17. We can further split the wall interaction

force density t into three components t = tl + tr + tb, which denote the forces

on the left and right side wall and the bottom wall, respectively. Averaging

further over z, we obtain that (tlz + trz)/tz = 21% of the flow weight is held by

the shear forces on the side walls, while tbz/tz = 79% is held by the downward

stress, which is then transferred to the base wall. Further analysis of the forces

at the walls reveals that friction on the side walls is measured to be tlx/t
l
z = 0.41

for the left and −trx/t
r
z = 0.42 for the right side wall.
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Figure 17: Components of the hydrostatic stress balance, eq (19): Weight density ρgz , the

downwards stress gradient −∂zσzz , and the combination of shear forces at the wall, −tz , and

the stress gradient. Data averaged over x, y and 1 ≤ t ≤ 1.4 for w = d.
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4.6. Flow rheology

Next, we take a look at the mobilised macroscopic friction, the ratio between

shear stress and normal stress, evaluated as

µ =
1√
6p

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2, (20)

where σi denotes the eigenvalues of the stress tensor and p the pressure. The

macroscopic friction ranges from 0.7 to nearly 1 almost everywhere except near

the flow surface, as shown in Figure 18a, which is consistent with the chosen

microscopic interparticle sliding and rolling friction. It is particularly high in

the shear zone, which is not surprising, as the friction in sheared (critical) flows

is known to be a function of the inertial number, I = γ̇d√
pρp

. This is shown in

Figure 18b. While no clear functional behaviour can be seen, the friction is

clearly increasing with inertial number.
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Figure 18: Left : Mobilised macroscopic friction µ = |σD|/p as function of position. Dots and

lines denote the centre and width of the shear zone, respectively (according to (18)).Right :

Friction as function of inertial number. The data from the shear zone data for I > 0.1 is fitted

linearly. All data averaged over y and 1 ≤ t ≤ 1.4 for w = d.

5. Conclusion

In this article, coarse-graining (CG) formulations (i.e. the micro-macro tran-

sition) are reviewed and applied to a simulation of the flow through a model
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scale quasi-2D silo, as an example of a spatially inhomogeneous system. The

system is homogeneous in depth y and, consequently, all variables are averaged

over this direction. The remaining two-dimensional fields show three well de-

fined regions, where a fast-flowing core is separated by a narrow shear band

from a stagnant outer region. The temporal evolution of the system shows that

the flow is fully developed in the interval 0.75 s < t < 2 s, where most fields vary

little over time except that the stresses decreases gradually over time due to the

decreasing height of the solid.

The CG formulation depends on two parameters, the spatial and tempo-

ral averaging length scales w and ∆t. To determine the optimal parameters,

one point from each region is analysed for different parameter values. Time-

averaging around the instant t = 1.2 s shows that the variables are indepen-

dent of the chosen time interval for ∆t < 1.2 s. However, the variance of the

(time-dependent) stress in the stagnant zone increases for ∆t > 0.4 s; therefore,

∆t = 0.4 s is selected as the optimal time-averaging interval.

The results for the coarse-graining width w show that for w/d < 0.5, the av-

eraged fields are strongly dependent on the choice of ∆t for ∆t < 0.4 s, indicating

that the fluctuations in the data are too significant to obtain meaningful aver-

ages. For 0.5 < w/d < 1, the resulting fields are nearly parameter-independent,

therefore w = d is recommended for spatial averaging.

The study shows that the choice of spatial coarse-graining width and time

averaging interval is crucial to obtain meaningful field definitions in systems with

highly localized behaviour. While no general choice of parameters is obtained,

the article outlines how to obtain the ideal set of parameters for an individual

system.

Once the CG parameters are selected, the macroscopic fields are used to

study the flow patterns in the silo. To demarcate the three distinct flow regions,

we look for a definition of the location and width of the shear bands. We observe

that the tensorial shear rate γ̇ and the inertial number are high in the left and

right shear band (mainly simple shear) as well as in the core flow region (mainly

pure shear). Thus, the horizontal shear rate, ∂xvz, is used to define the shear
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band, as it almost vanishes in the core flow region.

We compare three definitions for the shear band centre and width at a given

height z: (a) the maximum and the 0.6-quantile of the shear rate, (b) the cen-

troid and hygroscopic radius of the shear rate, and (c) the mean and standard

deviation of a Gaussian fit to all shear rate values above the 0.6-quantile. Def-

inition (c) is recommended, as for definition (a) both width and centre are

dependent on the spatial resolution upon which the fit is made, and the width

is strongly parameter-dependent in both definitions (a) and (b). Furthermore,

the definition (c) of the width and centre are shown to be independent of w for

0.3 < w/d < 1.

The stress analysis shows that the normal stresses are high in the stagnant

region and nearly vanish in the flowing region. Furthermore, the normal stresses

are highly anisotropic, with the downward stress much larger than the vertical

stresses as would be expected in a silo condition [20, 21]. The stress is shown

to transfer the weight of the flow to the walls, with the shear forces on the

side walls carrying 21% and the base wall carrying 79% of the weight. Finally,

the µ(I) rheology is addressed, which states that the ratio of shear and normal

stresses, µ, is a function of the inertial number, I, if the flow is in critical steady

state. This is shown to be true for the shear zone, where the friction increases

nearly linearly with the inertial number [11, 22].

The analysis of the flow rheology in this paper is by no means complete, as

the focus of this paper was to investigate and find the optimal CG parameters. In

a further publication on this topic, we intend to analyse the stress tensor further

to better understand the many interesting phenomena that can be observed in

these situations. Examples are the strong stress anisotropy and the stick-slip

behaviour near the walls, the rheology and the dynamic behaviour of the shear

band, and the arch observed in the central flow region.
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