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Gaël Combe

Stefan Luding





Editorial

The ALERT Doctoral School 2017 on “Discrete Element Modeling” will take place
as usual in Aussois, from October 5th to 7th, 2017. The School has been organized
by Prof. Gaël Combe (3SR Grenoble) and Prof. Stefan Luding (University Twente),
who have prepared a very stimulating didactic path, well calibrated both for basic and
advanced users, on such a powerful computational approach.

I sincerely thank the organizers, the editors and all the authors of the contributions to
this book for their effort: thank you!

Although DEM is a rather well established numerical approach for research purposes
since the early Eighties, all its potentialities have not yet been fully investigated, and
they are continuously growing with the increase in the available computational capac-
ity and with the introduction of some advanced modelling features (advanced contact
laws, fluid/grain coupling, ...). I think that the ALERT community, and especially all
the students and researchers who are going to attend the School or read this book, will
take great advantage from this school.

Lectures will include topics ranging from basic concepts of DEM simulations (Molec-
ular Dynamics, Event Driven, DEM basics), advanced contact laws for DEM applica-
tions, contact dynamics, applications to soil and rock mechanics.

As in 2016, practical sessions will be organized on the last day of the school: I am sure
that this will be a very stimulating and efficient way to apply the theoretical concepts
learnt in the first two days, and to share the knowledge among the practitioners and
the teachers.

As usual, the pdf file of the book can be downloaded for free from the website of
ALERT Geomaterials – http://alertgeomaterials.eu/.

On behalf of the ALERT Board of Directors I wish all participants a successful ALERT
Doctoral School 2017!

Andrea Galli
Director of ALERT Geomaterials
Politecnico di Milano

ALERT Doctoral School 2017





Contents

Foreword
K. Taghizadeh, G. Combe, S. Luding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

From soft and hard particle simulations to continuum theory for granular flows
S. Luding, N. Rivas, T. Weinhart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

The contact dynamics (CD) method
F. Radjai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Fluid-grain coupling using the Lattice Boltzmann method
J.-Y. Delenne, L. Amarsid, P. Mutabaruka, V. Richefeu, F. Radjai . . . . . . . . . . . . . . . 61

Advanced contact laws
C.L. Martin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Good practice for sample preparation – Construction of granular packings
G. Combe, J-N. Roux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

DEM applied to soil mechanics
K. Taghizadeh, S. Luding, V. Magnanimo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Predicting the strength of anisotropic shale rock: Empirical nonlinear failure criterion
vs. Discrete Element Method model
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Discrete Element Modeling: Foreword

The chapters in this volume are related to the lectures of the 2017 ALERT Geoma-
terials Doctoral School devoted to Discrete Element Modeling and its application in
geomechanics, geomaterials, and geophysics.

The purpose of this volume is to present the basic concepts of particle simulation
methods and their application to classical and modern problems of geomechanics.
The volume is organized in 8 chapters.

The first two chapters [Luding et al., and Radjai et al.] concern the basic three dif-
ferent simulation approaches, as there are the soft particle discrete element method
(DEM), as well as the event driven (ED), and the contact dynamics (CD) approaches
that are starting from rigid particles. On the side of techniques, the third chapter [De-
lenne et al.] addresses the modeling of partly and/or fully saturated particulate-based
porous materials, even though this is not explored in more detail in this course.

Chapters 4 [Martin] and 5 [Combe et al.] address the very important issues of ad-
vanced interaction models between the particles, and preparation procedures (best
practice and pitfalls), respectively. Both aspects have to be considered before a re-
liable particle simulation of geomechanical systems can be performed. First, after
choosing a contact model, the parameters have to be calibrated. Second, dependent
on the experiment and material one plans to simulate, the samples have to be carefully
prepared such that the numerical model represents the real system as much as possi-
ble. Third, an element or laboratory test has to be carried out and the results should
be compared with experiments for validation before, eventually, the simulation results
can be interpreted and conclusions can be drawn about the micro-mechanics and its
effect on the static, stability and flow behavior of particulate, granular materials like
soil.

Chapter 6 [Taghizadeh et al.] is concerned with several experimental procedures
like shear- or tri-axial testing as well as mechanical wave propagation in laboratory
element tests, and how to simulate such tests. In contrast to small-strain testing there
are also large-strain and failure situations described, while the final chapter 7 [Donze
et al.] addresses the issues of mechanical stability and the formation of shear-bands
in tests of realistically layered materials.

The course will also have practical sessions on particle simulation methods for be-
ginners and for experts as well. The final chapter 8 gives an introduction into the
installation and use of an open-source code mercuryDPM [Tunuguntla et al.], and on
how to extract continuum scale macroscopic fields from particle simulations, which
is addressed already to some extent in almost all other chapters and more worked
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out here. Some further material will be made available in electronic form, i.e., all
participants should bring their laptop computer for the particle simulation practical
sessions.

We would like to thank all the contributors to this volume, as well as the referees of the
papers. We hope that the chapters provide a valuable introduction to basics and ad-
vanced issues of particle simulation (like contact models and preparation procedures),
theoretical concepts for both particle and continuum modeling, and the application of
those in geomechanics laboraty and numerical testing, covering the state of the art of
recent developments in the field.

Editors:

K. Taghizadeh
G. Combe
S. Luding

2 Foreword
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From soft and hard particle simulations to
continuum theory for granular flows

S. Luding, N. Rivas, T. Weinhart

Multi-Scale Mechanics, Faculty of Engineering Technology (ET),
MESA+, University of Twente, Enschede, The Netherlands

One challenge of today’s research is the realistic simulation of disordered many par-
ticle systems in static and dynamic/flow situations. Examples are particulate and
granular materials like sand, powders, ceramics or composites, with applications in
particle-technology and geo-technical/physical systems. The inhomogeneous micro-
structure of such materials makes it very difficult to model them with continuum meth-
ods, which typically assume homogeneity on the microscale and scale separation be-
tween the constituents and the macroscopic fields. As an alternative, discrete particle
methods can be applied, since they intrinsically take the micro-structure into account.
The ultimate challenge is to bridge the gap between both approaches by using particle-
simulations to obtain appropriate constitutive relations for continuum theories, and
work with those on the macro-scale. Here, soft and hard particle simulation methods
are introduced as well as the micro-macro transition to obtain the continuum fields
from the particle data. Two application examples discussed in detail concern the flow
of particle down an incline, as relevant for geo-flows, as well as a vibrated granular
system as relevant for highly agitated transport or conveying processes.

1 Introduction

Most general materials have inhomogeneous micro-structures such as powders, sands,
and even geo-materials. In such discrete, particulate, granular systems the particles
can be complex, non-spherical, and consist of different materials. The idealized con-
stituents we focus on in the following are spherical, polydisperse, elasto-plastic, ad-
hesive, and frictional objects.

One approach towards the microscopic understanding of such macroscopic particulate
material behavior [HHL98, Kis01, HW04] is the discrete modeling of particles. Soft
and hard particle methods are discussed here, while other particle methods like contact
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dynamics (CD) are discussed in Ref. [Rad]. The method of particle simulations, and
the practical aspects are also addressed in other lectures and practicals [CR, TWT],
where more details on contact-models [Mar] are as important as the careful sample
preparation [CR], and methods to model and interpret geotechnical experiments [DS,
TML].

Even though millions of particles can be simulated, the possible size of such a par-
ticle system is in general too small to regard it as macroscopic. Therefore, methods
and tools to perform a so-called micro-macro transition [VDE+01, PL01, KBG49] are
discussed. “Microscopic” particle simulations can be used to derive macroscopic con-
stitutive relations, as needed to describe the material within the framework of contin-
uum theory, on the scales of large industrial unit-operations and natural/geotechnical
phenomena like avalanches or landslides.

In idealized granular materials, when the particle properties and interaction laws are
defined, the equations of motion can be integrated in time. The collective behavior
of dissipative many-particle systems can be studied in static and dynamic situations
as well. For example, from particle simulations one can extract the pressure of the
system as a function of density. This “equation of state” can then be used for the
macroscopic description of dynamic materials, which can be viewed as a compress-
ible, non-Newtonian complex fluid [LLH01], including fluid-solid phase transitions
and energy dissipation terms.

Several techniques have been used to calculate the continuum fields from steady state
flow situations, see [LAM11] and references therein. The stress tensor is of particular
interest for the momentum balance equations: previous techniques include the Irvin-
Kirkwood’s approach [IK50] or the method of planes [TED95]. Here, we use the
coarse-graining approach as originally described in Ref. [Bab97, Gol10, WTLB12a,
WLT13], and as also presented in the paper by Thornton [TWT]. It has the following
advantages as compared to other methods: (i) the resulting fields automatically satisfy
exactly the equations of continuum mechanics, also near boundaries or in mixtures, if
corrected as proposed in [WTLB12a, WLT13], (ii) it is not assumed that the particles
are spherical (but a single point of contact is required); and, (iii) the results are valid
even for single particles and at one moment in time, as no ensemble averaging is
required to satisfy the mass and momentum balance.

In the following, two particle simulation methods are introduced. The first is the so-
called soft sphere Discrete Element Method (DEM), which is also often referred to as
Molecular Dynamics (MD), as described in Section 2. It is straightforward to imple-
ment a solver for the equations of motion for a system of many interacting particles
[AT87, Rap95]. For DEM, both normal and tangential interactions, like friction, are
discussed for spherical particles. The second method is the so-called Event-Driven
(ED) simulation, discussed in Section 3, which is conceptually different from DEM,
since collisions are dealt with via a collision matrix that in one step determines the
momentum change on physical grounds. For the sake of brevity, the ED method is
only discussed for smooth (that is, frictionless) spherical particles. Furthermore, a
method to relate the soft and hard particle methods is provided in Section 4. For more
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details on ED simulations see Ref. [Lud09] and references therein. To illustrate the
micro-macro transition, the density, velocity and stress for a system of soft or hard
spheres is defined in Section 5 by means of coarse graining, also referred to as the
“micro-macro transition”. Two examples are discussed in detail: First, chute flow in
Section 6, where the above-described simulation methods can be applied for quasi-
static, slow and inertial, dynamic systems. Macroscopic quantities are obtained using
the micro-macro transition (or coarse graining) methodology introduced in the earlier
chapters and all the resulting tensorial fields are discussed in depth, even though most
of them are usually neglected in very many application and research studies. Second,
the example of vibrated, collisional systems is presented in Section 7, where the two
methods DEM and ED can be directly compared. Situations where he methods lead
to the same results are presented together with cases where the results are differing.

2 The Soft-Particle Discrete Element Method

The elementary units of granular materials are mesoscopic grains which deform under
stress. Since the realistic modeling of the deformations of the particles is much too
complicated, we relate the interaction force to the overlap δ of two particles as a first
order approximation, see Fig. 1a. Note that the evaluation of the inter-particle forces
based on the overlap may not be sufficient to account for the inhomogeneous stress
distribution inside the particles, and related multi-contact effects. Consequently, our
results presented below are of the same quality as the simplifying assumptions about
the pairwise force-overlap relation.

δ

r

ri

j

δ

k1δ

−k

(δ−δ )*
2        0k

δmax

f hys

minδ

min
f

f
0

0
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Figure 1: (Left) Two particle contact with overlap δ. (Right) Schematic graph of
the piecewise linear, hysteretic, adhesive force-displacement model introduced be-
low in Eq. (6). Note the important non-linearity of contact stiffness with confining
stress (previous maximal overlap, δmax), that manifests in the functional dependence
of k∗2(δmax), as specified below in Eqs. (7) and (8).
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2.1 Equations of Motion

If the total force ~fi acting on particle i, either due to other particles and boundaries
or from external forces, is known, then the problem is reduced to the integration of
Newton’s equations of motion for the translational and rotational degrees of freedom,

mi
d2

dt2
~ri = ~fi +mi~g, and Ii

d

dt
~ωi = ~ti, (1)

with mi the mass of particle i, ~ri its position, ~fi =
∑
c
~f ci the total force acting on it

due to contacts with other particles or with the walls, ~g the acceleration due to volume
forces like gravity, Ii the spherical particle’s moment of inertia, ~ωi its angular velocity
and ~ti =

∑
c

(
~lci × ~f ci + ~qci

)
the total torque, where ~qci are torques/couples at contacts

other than the torques due to the tangential force, e.g., due to rolling and torsion, and
~lci the vector from the particle’s centre of mass to the contact point.

The equations of motion are thus a system of D +D(D − 1)/2 coupled ordinary dif-
ferential equations to be solved in D dimensions. The solution of such equations is
straightforward, using numerical integration tools such as the ones nicely described
in textbooks [AT87, Rap95]. The typically short-ranged interactions in granular me-
dia allow for further optimizations by using linked-cell spatial structures or alternative
methods [AT87, Rap95, KOL14] in order to make the search for colliding particles
more efficient. In the case of long-range interactions, (e.g. charged particles with
Coulomb interaction, or objects in space with self-gravity) this is not possible any-
more, so that more advanced methods for optimization have to be applied. Here we
restrict ourselves to short-range interactions.

Specifically, two spherical particles i and j, with radii ai and aj , respectively, interact
only if they are in contact, that is, their overlap

δ = (ai + aj)− (~ri − ~rj) · ~n (2)

is positive, δ > 0, with the unit vector ~n = ~nij = (~ri−~rj)/|~ri−~rj | pointing from j to
i. Note the different sign convention used in the contact dynamics (CD) method, where
δ > 0 means a separation and not the contact of particles [Rad]. The force on particle
i, from particle j, at contact c, can be decomposed into a normal and a tangential part
as ~f c := ~f cij = fn~n + f t~t. In the following, we specify ~f cij for different models that
take into account increasingly complicated grain interactions, see also Ref. [Mar]. We
begin by discussing fn.

6 From soft and hard particle simulations to continuum theory for granular flows
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2.2 Normal Contact Force Laws

2.2.1 Linear Normal Contact Model

The simplest normal contact force model, which takes into account excluded volume
and dissipation, involves a linear repulsive and a linear dissipative force,

fn = kδ + γ0vn , (3)

with a spring stiffness k, a viscous damping γ0, and the relative velocity in normal
direction vn = −~vij · ~n = −(~vi − ~vj) · ~n = δ̇. This so-called linear spring dashpot
model considers the particle interactions as a damped harmonic oscillator. As such, the
half-period of a vibration around an equilibrium position can be computed, obtaining
a typical response time on the contact level,

tc =
π

ω
, with ω =

√
(k/mij)− η2

0 , (4)

with the eigenfrequency of the contact ω, the rescaled damping coefficient η0 =
γ0/(2mij), and the reduced mass mij = mimj/(mi + mj). From the solution of
the velocity at the half period of the oscillation, one also obtains the coefficient of
restitution,

r = −v′n/vn = exp (−πη0/ω) = exp (−η0tc) , (5)

which quantifies the ratio of relative velocities after (primed) and before (unprimed)
the collision. For a deeper discussion of the coefficient of restitution and other, more
realistic, non-linear contact models, see e.g. [Lud98, SML15, TCC17] and the papers
by Martin [Mar] and Radjai [Rad].

The contact duration in Eq. (4) is also of practical technical importance, since the inte-
gration of the equations of motion is stable only if the integration time-step ∆tDEM is
much smaller than tc. Furthermore, notice that in the extreme case of an overdamped
spring, tc can become very large, and therefore the use of neither too weak nor too
strong dissipation is recommended.

2.2.2 Adhesive, Elasto-Plastic Normal Contact Model

Let us now consider a variant of the linear hysteretic spring model [WB86, Lud98,
Tom00, Lud08], as an alternative to the frequently used spring-dashpot models. This
model is a simple version of some more complicated nonlinear-hysteretic force laws
[WB86, ZSS91, STS93], which reflects the fact that plastic deformations take place at
the contact point. Overall, the model is meso-scopic [SMSL14], i.e. it describes the
collective interactions of a bulk of primary particles that are represented by a meso-
particle. The repulsive (hysteretic) force can be written as

fhys =





k1δ for loading, if k∗2(δ − δ0) ≥ k1δ
k∗2(δ − δ0) for un/reloading, if k1δ > k∗2(δ − δ0) > −kcδ ,
−kcδ for unloading, if − kcδ ≥ k∗2(δ − δ0)

(6)

Luding, Rivas, Weinhart 7
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with k∗2 ≥ k1 > 0. The constant k∗2 is determined by the parameter k2, as explained
below. Fig. 1 shows an schematic of the loading and unloading process.

During the initial loading the force increases linearly with the overlap δ, until the
maximum overlap δmax is reached (which has to be kept in memory as a history pa-
rameter). The line with slope k1 thus defines the maximum force possible for a given
δ. During unloading the force drops from its value at δmax down to zero at overlap
δ0 = (1 − k1/k

∗
2)δmax, on the line with slope k∗2 . Reloading at any instant leads to

an increase of the force along this line, until the maximum force is reached; for still
increasing δ, the force follows again the line with slope k1 and δmax has to be adjusted
accordingly.

Unloading below δ0 leads to negative, i.e. attractive, forces until the minimum force
−kcδmin is reached at the overlap δmin = (k∗2 − k1)δmax/(k

∗
2 + kc). This minimum

force, i.e. the maximum attractive force, is obtained as a function of the model pa-
rameters k1, k2, kc, and the history parameter δmax. Further unloading leads to
attractive forces fhys = −kcδ on the adhesive branch with slope −kc. The high-
est possible attractive force, for given k1 and k2, is reached for kc → ∞, so that
fhys

max = −(k2 − k1)δmax. Since this would lead to a discontinuity at δ = 0, it is
avoided by using finite kc ≥ 0.

The lines with slope k1 and −kc define the range of possible force values and depar-
ture from these lines takes place in the case of unloading and reloading, respectively.
Between these two extremes, unloading and reloading follow the same line with slope
k∗2 . Possible equilibrium states are indicated as circles in Fig. 1, where the upper and
lower circle correspond to pre-stressed states with repulsive and attractive forces, re-
spectively. Small overlap perturbations lead to small force deviations along the line
with slope k∗2 , as indicated by the arrows.

Even though a non-linear un-/reloading behavior would be more realistic, we use the
piecewise linear model as a compromise, mainly due to a lack of detailed experimental
information for better calibrating the model. Only recently, due to nano-indenters and
their more reliable force-displacement sensors, experimental data for unloading forces
on the contact level between small particles become available. One refinement of the
older models involves considering an unloading stiffness k∗2 dependent on the maxi-
mum overlap, i.e. the contact force and confining stress [LMM05, Lud08, SMSL14,
SML15]. Introducing an additional contact-history parameter, the maximal overlap,
δpmax, one has

k∗2(δmax) =

{
k2 if δmax ≥ δpmax

k1 + (k2 − k1)δmax/δ
∗
max if δmax < δpmax

, (7)

increasing from k1 to k2 with the maximum overlap, until δpmax is reached, and an
elastic branch with maximal stiffness k2 is established (not shown in Fig. 1, see
Ref. [SML15] for details). As a side-remark, the limit-slope k2 can be introduced
for practical reasons. If k2 is not limited, the contact duration could become very
small, i.e. the time step would have to be reduced below values that yield reason-
able performance. However, there are also other – physical and mechanical – rea-

8 From soft and hard particle simulations to continuum theory for granular flows
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sons for an elastic cut-off [SML15]; how to avoid the elastic cut-off was presented in
Ref. [SML15].

The linear interpolation in Eq. (7) is arbitrary: one can vary it depending on the mate-
rial under consideration, using as additional parameter the power ψ, so that the stiff-
ness

k∗2(δmax) =

{
k2 if δmax ≥ δpmax

k1 + (k2 − k1) [δmax/δ
∗
max]

ψ
if δmax < δpmax

, (8)

is non-linearly interpolated. This includes the linear case, for ψ = 1, as originally
suggested [Lud08], the invariant stiffness, for ψ = 0, or the non-linear interpolation
to provide Hertzian-type behavior of the coefficient of restitution, for ψ = 1/2, as
first suggested in Ref. [SML15] (see Fig. 14), and more recently in Ref. [TCC17].
For different materials, different values of ψ might be more appropriate than those
three cases, but the generalized Eq. (8) leaves this as an option to be chosen during
parameter calibration.

While in the case of collisions of particles with large deformations, dissipation takes
place due to the hysteretic nature of the force-law, stronger dissipation of small ampli-
tude deformations is achieved by adding the viscous, velocity dependent dissipative
force from Eq. (3) to the hysteretic force, such that fn = fhys + γ0vn. The hysteretic
model contains the linear contact model as the special case when k1 = k2 = k.

2.2.3 Long Range Normal Forces

Medium range van der Waals forces can be taken into account in addition to the hys-
teretic force such that fn = fhys + fvdW with, for example, the attractive part of a
Lennard-Jones Potential

fvdW(rij) = −6(ε/r0)[(r0/rij)
7 − (r0/rc)

7] for rij := |~ri − ~rj | ≤ rc . (9)

The new parameters necessary for this force are an energy scale ε, a typical length
scale r0 and a cut-off length rc. As long as rc is not much larger than the particle di-
ameter, the methods for short range interactions can still be applied to such a medium
range interaction model – only the linked cells have to be larger than twice the cut-off
radius, since no force should be active for r > rc. A piecewise linear non-contact
force is proposed in Ref. [SML15] for both reversible and irreversible contact models
that mimick van der Waals or Coulomb type interactions and liquid bridges that are
hysteretic in nature, respectively.

2.3 Kinematics of Tangential Forces and Torques

For the tangential degrees of freedom, there are three different force- and torque-laws
to be implemented: (i) friction, (ii) rolling resistance, and (iii) torsion resistance.

Luding, Rivas, Weinhart 9
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2.3.1 Sliding

For dynamic (sliding) and static friction, the relative tangential velocity of the contact
points,

~vt = ~vij − ~n(~n · ~vij) , (10)

is to be considered for the force computations (or torque computations in subsection
2.4), with the total relative velocity of the particle surfaces at the contact

~vij = ~vi − ~vj + a′i~n× ~ωi + a′j~n× ~ωj , (11)

with the corrected radius relative to the contact point a′α = aα − δ/2, for α = i, j.
For strongly different particle sizes and large overlaps, this has to be considered in
more detail [TWT]. Tangential forces and torques acting on the contacting particles
are computed from the accumulated sliding and rolling/torsion of the contact points
relative to each other, as described in detail in subsec. 2.4.1.

2.3.2 Objectivity

Objectivity is about the invariance of contact models in moving or rotating reference
frames. In general, two particles can rotate together, due to either a global rotation
of the reference frame or a non-central “collision”. Either way, the angular velocity
~ω0 = ~ωn0 + ~ωt0, of the rotating reference has the tangential-plane component

~ωt0 =
~n× (~vi − ~vj)
a′i + a′j

, (12)

which is related to the relative velocity, while the normal component, ~ωn0 , is not. In-
serting ~ωi = ~ωj = ~ωt0, from Eq. (12), into Eq. (11) leads to zero sliding velocity,
proving that the above relations are objective. Tangential forces and torques due to
sliding can become active only when the particles are rotating in the same direction
with respect to the common rotating reference frame. For rolling and torsion, there is
no similar relation between rotational and tangential degrees of freedom: for any ro-
tating reference frame, torques due to rolling and torsion can become active only due
to rotation of two particles relative to each other, in opposite direction, in the common
reference frame.

Since action should be equal to reaction, the tangential forces are equally strong, but
opposite, i.e., ~f tj = −~f ti , while the corresponding torques are parallel but not nec-
essarily equal in magnitude: ~qfriction

i = −a′i~n × ~fi, and ~qfriction
j = (a′j/a

′
i)~q

friction
i .

Note that tangential forces and torques together conserve the total angular momentum
about the pair center of mass

~Lij = ~Li + ~Lj +mir
2
icm~ω

t
0 +mjr

2
jcm~ω

t
0 , (13)

with the rotational contributions ~Lα = Iα~ωα, for α = i, j, and the distances rαcm =
|~rα−rcm| from the particle centers to the center of mass ~rcm = (mi~ri+mj~rj)/(mi+

10 From soft and hard particle simulations to continuum theory for granular flows
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mj), see Ref. [Lud98]. The change of angular momentum consists of the change of
particle spins (first term) and of the change of the angular momentum of the two
masses rotating about their common center of mass (second term):

d~Lij
dt

= ~qfriction
i

(
1 +

a′j
a′i

)
+
(
mir

2
icm +mjr

2
jcm

) d~ωt0
dt

, (14)

which both contribute, but exactly cancel each other, since

~qfriction
i

(
1 +

a′j
a′i

)
= −(a′i + a′j)~n× ~fi (15)

= −
(
mir

2
icm +mjr

2
jcm

) d~ωt0
dt

,

see [Lud06] for more details.

2.3.3 Rolling

A rolling velocity ~v0
r = −a′i~n × ~ωi + a′j~n × ~ωj , defined in analogy to the sliding

velocity, is not objective in general [Els06, Lud06] – only in the special cases of (i)
equal-sized particles or (ii) for a particle rolling on a fixed flat surface.

The rolling velocity should quantify the distance the two surfaces roll over each other
(without sliding). Therefore, it is equal for both particles by definition. An objective
rolling velocity is obtained by using the reduced radius, a′ij = a′ia

′
j/(a

′
i + a′j), so that

~vr = −a′ij (~n× ~ωi − ~n× ~ωj) . (16)

This definition is objective since any common rotation of the two particles vanishes
due to the difference. A more detailed discussion of the issue of rolling is beyond the
scope of this paper.

A rolling velocity will activate torques, acting against the rolling motion, e.g., when
two particles are rotating anti-parallel with spins in the tangential plane. These torques
are then equal in magnitude and opposite in direction, i.e., ~qrolling

i = −~qrolling
j =

aij ~n × ~fr, with the quasi-force ~fr, computed in analogy to the friction force, as
function of the rolling velocity ~vr in Eq. 16. The quasi-forces for both particles are
opposite and equal but do not act on the centers of mass, so that the total momenta
(translational and angular) are conserved.

2.3.4 Torsion

For torsion resistance, the relative spin along the normal direction

~vo = aij (~n · ~ωi − ~n · ~ωj)~n , (17)
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is to be considered, which activates torques when two particles are rotating anti-
parallel with spins parallel to the normal direction. Torsion is not activated by a com-
mon rotation of the particles around the normal direction ~n · ~ω0 = ~n · (~ωi + ~ωj) /2,
which makes the torsion resistance objective.

The torsion torques are equal in magnitude and directed in opposite directions, i.e.,
~qtorsion
i = −~qtorsion

j = aij ~fo, with the quasi-force ~fo, computed from the torsion ve-
locity in Eq. 17, and also not changing the translational momentum. Like for rolling,
the torsion torques conserve the total angular momentum.

2.3.5 Summary

The implementation of the tangential force computations for ~ft, ~fr, and ~fo as based
on ~vt, ~vr, and ~vo, respectively, is assumed to be identical, i.e., even the same sub-
routine is used, but with different parameters as specified below. The difference is
that friction leads to a force in the tangential plane (changing both translational and
angular momentum), while rolling- and torsion-resistance lead to quasi-forces in the
tangential plane and the normal direction, respectively, changing the particles’ angular
momentum only. For more details on tangential contact models, friction, rolling and
torsion, see Refs. [BUK+05, DvZTR05, Lud07, Lud06, Els06]. The contact laws are
implemented in MercuryDPM [WTLB12b, TWLB12b, TWT].

2.4 Tangential Force and Torque Laws

The tangential contact model presented now is a single procedure (subroutine) that can
be used to compute either sliding, rolling, or torsion resistance. The subroutine needs
a relative velocity as input and returns the respective force or quasi-force as function of
the accumulated deformation. The sliding/sticking friction model will be introduced
in detail, while rolling and torsion resistance are discussed only where different.

2.4.1 Sliding/Sticking Friction Model

The tangential force is coupled to the normal force via Coulomb’s law, i.e. an inequal-
ity: f t ≤ fsC := µsfn, see also Ref. [Rad]. For the sliding case one has dynamic
friction as equality: f t = f tC := µdfn. The dynamic and the static friction coeffi-
cients follow, in general, the relation µd ≤ µs. The static situation requires an elastic
spring in order to allow for a restoring force, i.e., a non-zero remaining tangential
force in static equilibrium due to activated Coulomb friction.

If a purely repulsive contact is established, fn > 0, and the tangential force is active.
For an adhesive contact, Coulombs law has to be modified in so far that fn is replaced
by fn+kcδ. In this model, the reference for a contact is no longer the zero force level,
but it is the adhesive, attractive force level along −kcδ.
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If a contact is active, one has to project (or better rotate) the tangential spring into the
actual tangential plane, since the frame of reference of the contact may have rotated
since the last time-step. The tangential spring

~ξ = ~ξ′ − ~n(~n · ~ξ′) , (18)

is used for the actual computation, where ~ξ′ is the old spring from the last iteration,
with |~ξ| = |~ξ′| enforced by appropriate scaling/rotation. If the spring is new, the
tangential spring-length is zero, but its change is well defined after this first initiation
step. In order to compute the changes of the tangential spring, a tangential test-force is
first computed as the sum of the tangential spring force and a tangential viscous force
(in analogy to the normal viscous force)

~f t0 = −kt ~ξ − γt~vt , (19)

with the tangential spring stiffness kt, the tangential dissipation parameter γt, and ~vt
from Eq. (10). As long as |~f t0| ≤ fsC , with fsC = µs(fn + kcδ), one has static friction
and, on the other hand, for |~f t0| > fsC , sliding friction becomes active. As soon as |~f t0|
gets smaller than fdC , static friction becomes active again.

In the static friction case, below the Coulomb limit, the tangential spring is incre-
mented

~ξ′ = ~ξ + ~vt ∆tDEM , (20)

to be used in the next iteration in Eq. (18), and the tangential force ~f t = ~f t0 from Eq.
(19) is used. In the sliding friction case, the tangential spring is adjusted to a length
consistent with Coulombs condition, so that

~ξ′ = − 1

kt

(
fdC ~t+ γt~vt

)
, (21)

with the tangential unit vector, ~t = ~f t0/|~f t0|, defined by Eq. (19), and thus the magni-
tude of the Coulomb force is used. Inserting ~ξ′ from Eq. (21) into Eq. (19) during the
next iteration will lead to ~f t0 ≈ fdC~t. Note that ~f t0 and ~vt are not necessarily parallel
in three dimensions. However, the mapping in Eq. (21) always works, rotating the
new spring such that the direction of the frictional force is unchanged and, at the same
time, limiting the spring in length according to Coulombs law. In short notation the
tangential contact law reads

~f t = f t~t = min
(
fC , |~f t0|

)
~t , (22)

where fC follows the static/dynamic selection rules described above. The torque on
a particle due to frictional forces at this contact is ~qfriction = ~lci × ~f ci , where ~lci is the
branch vector, connecting the center of the particle with the contact point. Note that
the torque on the contact partner is generally different in magnitude, since ~lci can be
different, but is directed in the same direction; see subsection 2.3.2 for details.

The four parameters for the friction law are kt, µs, φd = µd/µs, and γt, accounting
for tangential stiffness, the static friction coefficient, the dynamic friction ratio, and
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the tangential viscosity, respectively. Note that the tangential force described above is
identical to the classical Cundall-Strack spring only in the limits µ = µs = µd, i.e.,
φd = 1, and γt = 0. The sequence of computations and the definitions and mappings
into the tangential direction can be used in 3D as well as in 2D.

2.4.2 Rolling Resistance Model

The four new parameters for rolling resistance are kr, µr, φr and γr. The new param-
eters account for rolling stiffness, a static and dynamic rolling “friction” coefficient,
and rolling viscosity, respectively. In the subroutine called, the rolling velocity ~vr is
used instead of ~vt and the computed quasi-force ~fr is used to compute the torques,
~qrolling, on the particles.

2.4.3 Torsion Resistance Model

The four new parameters for rolling resistance are ko, µo, φ0 and γo. The new param-
eters account for torsion stiffness, a static and dynamic torsion “friction” coefficient,
and torsion viscosity, respectively. In the subroutine, the torsion velocity ~vo is used
instead of ~vt and the projection is a projection along the normal unit-vector, not into
the tangential plane as for the other two models. The computed quasi-force ~fo is then
used to compute the torques, ~qtorsion, on the particles.

2.5 Background Friction

Note that the viscous dissipation takes place in a two-particle contact. In the bulk
material, where many particles are in contact with each other, this dissipation mode is
very inefficient for long-wavelength cooperative modes of motion [LCB+94b, LCB+94a].
Therefore, an additional damping with the background can be introduced, so that the
total force on particle i is

~fi =
∑

j

(
fn~n+ f t~t

)
− γb~vi , (23)

and the total torque

~qi =
∑

j

(
~qfriction + ~qrolling + ~qtorsion

)
− γbra2

i ~ωi , (24)

with the damping artificially enhanced in the spirit of a rapid relaxation and equilibra-
tion. The sum in Eqs. (23) and (24) takes into account all contact partners j of particle
i, but the background dissipation can be attributed to the medium between the parti-
cles. Note that the effect of γb and γbr should be checked for each flow situation and
new set of parameters: it should be small in order to exclude artificial over-damping.
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The full set of parameters is summarized in table 1. Note that only a few parameters
are specified with dimensions, while most parameters are expressed as dimensionless
numbers.

Property Symbol
Time unit tu
Length unit xu
Mass unit mu

Particle radius a
Material density ρp

Elastic stiffness (variable) k2

Maximal elastic stiffness k = k2

Plastic stiffness k1/k
Adhesion “stiffness” kc/k
Friction stiffness kt/k
Rolling stiffness kr/k
Torsion stiffness ko/k
Plasticity depth φf
Coulomb friction coefficient µ = µd = µs
Dynamic to static friction ratio φd = µd/µs
Rolling “friction” coefficient µr
Torsion “friction” coefficient µo
Normal viscosity γ = γn
Friction viscosity γt/γ
Rolling viscosity γr/γ
Torsion viscosity γo/γ
Background viscosity γb/γ
Background viscous torque γbr/γ

Table 1: Summary of the microscopic contact model parameters. The longer ranged
forces and their parameters, ε, r0, and rc are not included here.

As computer algorithms work by definition with non-dimensional numbers, we also
include into the table the mass, length, and time units used in the simulation. These
can be the standard SI-units (1 kg, 1 m, and 1 s). However, mass, length and time
are often scaled such that all other parameters are non-dimensional. For example, the
units mu = (4/3)πρpa

3, xu = 2a and tu =
√

2a/g are used in section 6.

3 Hard-Particle Event-Driven Simulations

In this section, the hard-sphere Event-Driven (ED) model is introduced. Hard spheres
can be considered as the limit of infinite stiffness or, equivalently, zero contact time
tc, of the previously presented soft spheres contact models. In many situations hard
spheres are a good approximation of the real contact dynamics, even though details
of the contact- or collision behavior of the particles are ignored. This is especially
true when multi-particle contacts are irrelevant, as in highly agitated or low density
states. Nevertheless, a generalized model is also introduced that takes into account the
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finite contact duration of real particle collisions which, besides providing a physical
parameter, considerably saves computing time, as it avoids the so called “inelastic
collapse”.

In the framework of the hard sphere model, particles are assumed to be perfectly rigid
and follow an undisturbed motion until a collision occurs, as detailed below. Together
with the fact that collisions occur instantaneously, it becomes possible to implement
an event-driven simulation method [Lub91, LM98, ML04b, ML04a, Mil04]. ED sim-
ulations are usually orders of magnitude faster than their DEM soft particle equiva-
lents. Nonetheless, it is important to remark that the ED algorithm was only recently
implemented in parallel [Lub92, ML04b], a relevant aspect for today’s overall com-
puting efficiency; here we avoid to discuss this issue in detail, and only remark that,
to our knowledge, event-driven parallel algorithms scale sub-optimal with the number
of processors p, i.e. the speed-up reached was p1/2 instead of p, the standard for DEM
simulations.

The lack of physical information in the model allows a much simpler treatment of
collisions than described in Section 2, by just using a collision matrix based on mo-
mentum conservation and energy loss rules. For the sake of simplicity, here we restrict
ourselves to smooth hard spheres. Collision rules for rough spheres, that include fric-
tion coefficients, are extensively discussed elsewhere, see e.g. [LHMZ98, Lud09] and
references therein.

3.1 Smooth Hard Sphere Collision Model

The standard interaction model for instantaneous collisions of identical particles with
radius a, and mass m, is discussed in the following. The post-collisional velocities ~v′

of two collision partners in their center of mass reference frame are given, in terms of
the pre-collisional velocities ~v, by

~v′1,2 = ~v1,2 ∓ (1 + r)~vn /2 , (25)

with ~vn ≡ [(~v1 − ~v2) · ~n]~n, the normal component of the relative velocity ~v1−~v2, par-
allel to ~n, the unit vector pointing along the line connecting the centers of the colliding
particles. The restitution coefficient r ∈ [0, 1] is a measure of the level of inelasticity
in every collision, with r = 1 corresponding to the elastic case. If two particles col-
lide, their velocities are changed according to Eq. (25), with the corresponding change
of the translational energy at a collision

∆E = −m12(1− r2)v2
n/2 , (26)

with the reduced mass m12 = m1m2/(m1 +m2).
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3.2 Event-Driven Algorithm

The fundamental difference between an event-driven (ED) algorithm and a DEM soft-
particle simulation lies in the handling of the time evolution. ED simulations do not
possess a fixed time step, as DEM simulations, but a variable one, given always by
the immediately next event. An event is either the collision of two particles, or the
collision of one particle with a boundary, either physical or virtual. In the following,
the conditions needed to use this approach are detailed, as also several optimization
techniques for the definition of the next event.

The algorithm essentially consists of a cycle where the minimum of all future collision
times is determined, and then the proper collision rule is selected and executed. ED
simulations are thus extremely efficient when the time of the upcoming events can be
analytically computed. This is the case for a constant and homogeneous external field
(usually gravity) and infinitely hard spheres, as the solution for the time of collision
between two particles is actually given just by the intersection of their relative linear
trajectories. Walls, on the other hand, involve the solution of a quadratic equation.
Nevertheless, let us remark that although analytic determination of the collision times
highly simplifies the algorithm, the possibility of numerically solving the intersec-
tions of the equations of motion is also possible, and has been recently successfully
implemented [BSL11].

The critical optimization point for serial ED algorithms is in the determination of the
forthcoming collision times. The introduction of cells with virtual boundaries greatly
increases the efficiency of this process. Virtual boundaries collisions have no effect on
the particles motion, but are only introduced to keep track of which particles belong
to which cell. If all the particles with centers in a given cell and its neighboring
cells are known, then the search for possible collision partners for a particle in the
cell can be done locally. That is, instead of having to check all pairs of particles for
possible collisions, only local neighbors are considered, greatly reducing the time for
the determination of the next collision.

Another source of optimization involves the treatment of collisions. Simple ED algo-
rithms update the whole system after each event, a method which is straightforward
but inefficient for large numbers of particles. In Ref. [Lub91] an ED algorithm was
introduced which updates only those two particles involved in the last collision. The
fact that the algorithm is “asynchronous”, in so far that an event, i.e. the next event,
can occur anywhere in the system, makes parallelization a big challenge [ML04b].
For the serial algorithm, a double buffering data structure is implemented, which con-
tains the ‘old’ status and the ‘new’ status, each consisting of: time of event, positions,
velocities, and event partners. When a collision occurs, the ‘old’ and ‘new’ status of
the participating particles are exchanged. Thus, the former ‘new’ status becomes the
actual ‘old’ one, while the former ‘old’ status becomes the ‘new’ one and is then free
for the calculation and storage of possible future events. This seemingly complicated
exchange of information is carried out extremely simply and fast by only exchanging
the pointers to the ‘new’ and ‘old’ status respectively. Note that the ‘old’ status of
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particle i has to be kept in memory, in order to update the time of the next contact,
tij , of particle i with any other object j if the latter, independently, changed its status
due to a collision with yet another particle. During the simulation such updates may
be necessary several times so that the predicted ‘new’ status has to be modified.

The minimum of all tij is stored in the ‘new’ status of particle i, together with the
corresponding partner j. Depending on the implementation, positions and velocities
after the collision can also be calculated. This would be a waste of computer time,
since before the time tij , the predicted partners i and j might be involved in several
collisions with other particles, so that we apply a delayed update scheme [Lub91].
The minimum times of event, i.e. the times which indicate the next event for a certain
particle, are stored in an ordered heap tree, such that the next event is found at the top
of the heap with a computational effort of O(1); changing the position of one particle
in the tree from the top to a new position needs O(logN) operations. The search
for possible collision partners is accelerated by the use of a standard linked-cell data
structure and consumes O(1) of numerical resources per particle. In total, this results
in a numerical effort of O(N logN) for N particles. For a detailed description of the
algorithm see Ref. [Lub91].

Using all these optimizations, we are able to simulate about 106 particles within rea-
sonable time on a low-end PC [LH99], where the particle number is more limited by
memory than by CPU power. Parallelization, however, is a means to overcome the
limits of one processor [ML04b]. Since we could be interested in the behavior of
granular particles possibly evolving over several decades in time, the fastness of the
event-driven method becomes a crucial feature even for systems with low number of
particles.

As a final remark concerning ED, one should note that the disadvantages connected
to the assumptions made that allow to use an event driven algorithm limit the applica-
bility of this method. Within their range of applicability, ED simulations are typically
much faster than DEM simulations, since the former accounts for a collision in one
basic operation (collision matrix), whereas the latter requires order of 40 basic steps
(integration time steps). Note that this statement is also true in the dense regime. In
the dilute regime, both methods give equivalent results, because collisions are mostly
binary [LCB+94a]. When the system becomes denser, multi-particle collisions can
occur and the rigidity assumption within the ED hard sphere approach becomes in-
valid. For a recent study on soft, hard and rigid particles at moderate to high densities
above the fluid-solid transition, see Ref. [VL16] and references therein, where it is
shown that rigid particles have a strictly limit in density where the confining stress
diverges, whereas soft particle systems can be compressed further given the confining
stress is large enough. For the densities that can be reached using hard spheres, see
Ref. [OL13], where it is shown that the limit density can be approached up to the
numerical accuracy, and how this limit density depends on the polydispersity of the
particles (their size distribution and its moments).

While softness can not be easily introduced into an ED algorithm, another effect can
be elegantly considered: The most striking difference between hard and soft spheres
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is the fact that soft particles dissipate less energy when they are in contact with many
others of their kind. With other words, dissipation takes a finite time during, tc, the
Time of Contact (TC), which decreases with increasing stiffness of the particles. So
while ED still builds upon binary collisions, at very high densities, permanent multiple
contacts are taken mimicked by multiple collisions within the contact duration tc. In
the following chapter, the so called TC model is discussed as a means to account for
the stiffness dependent contact duration in the hard sphere model.

4 Linking ED and DEM via the TC Model

In the hard-sphere ED method the contact duration is implicitly zero, matching well
the corresponding assumption of instantaneous contacts used in kinetic theory [Haf83,
JR85]. Due to this artificial simplification (which disregards the fact that a real contact
takes always finite time) ED algorithms run into problems when the time between
events tn gets too small: in very dense systems with strong dissipation, tn may even
tend towards zero, which leads to a diverging dissipation rate; see Eq. (26). As a
consequence the so-called “inelastic collapse” can occur, i.e. the divergence of the
number of events per unit time. The problem of the inelastic collapse [MY94] can
be avoided using restitution coefficients dependent on the time elapsed since the last
event [LM98, LG03]. For the contact that occurs at time tij between particles i and
j, one uses r = 1 if at least one of the partners involved had a collision with another
particle later than tij − tec. The time tec can be seen as a typical Time of Contat (TC),
or contact duration, and allows for the definition of the dimensionless ratio

τc = tec/tn . (27)

The effect of tec on the simulation results is negligible for large r and small tec; for a
more detailed discussion see [LM98, LH99, LG03].

In assemblies of soft particles, multi-particle contacts are possible and the inelastic
collapse is naturally avoided, since the dissipation rate is always finite (less than
∆E/tec). The TC model can be seen as a means to approximate multi-particle col-
lisions for hard spheres in dense systems [LCRD96, Lud97, LM98]. Let us consider
the homogeneous cooling system (HCS) to evaluate the influence of the TC model in
the cooling dynamics. One can explicitly compute the corrected cooling rate (r.h.s.)
in the energy balance equation

d

dτ
E = −2I(E, tec) , (28)

with the dimensionless time τ = (2/3)At/tE(0) for 3D systems, scaled by A =
(1−r2)/4, and the collision rate t−1

E = (12/a)νg(ν)
√
T/(πm), with T = 2K/(3N).

In these units, the energy dissipation rate I is a function of the dimensionless energy
E = K/K(0) and the cut-off time tec, with K the kinetic energy. In this repre-
sentation, the restitution coefficient is hidden in the rescaled time via A = A(r),
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Figure 2: (Left) Deviation from the HCS, i.e. rescaled energy E/Eτ , where Eτ is the
classical solution Eτ = (1 + τ)−2. The data are plotted against τ for simulations with
different τc(0) = tec/tE(0) as given in the key/inset, with r = 0.99, and N = 8000.
Symbols are ED simulation results, the solid line results from the third order correc-
tion. (Right) E/Eτ plotted against τ for simulations with r = 0.99, and N = 2197.
Solid symbols are ED simulations, open symbols are DEM (soft particle simulations)
with three different tec as given in the inset.

so that inelastic hard sphere simulations with different r scale on the same master-
curve. When the classical dissipation rate E3/2 [Haf83] is extracted from I , so that
I(E, tec) = J(E, tec)E

3/2, one has the correction-function J → 1 for tc → 0. The
deviation from the classical HCS is [LG03]:

J(E, tec) = exp (Ψ(x)) , (29)

with the series expansion Ψ(x) = −1.268x + 0.01682x2 − 0.0005783x3 + O(x4)
in the collision integral, with x =

√
πtect

−1
E (0)

√
E =

√
πτc(0)

√
E =

√
πτc [LG03].

This is close to the result ΨLM = −2x/
√
π, proposed by Luding and McNamara,

based on probabilistic mean-field arguments [LM98], where ΨLM thus neglects non-
linear terms and underestimates the linear part.

Given the differential equation (28) and the correction due to multi-particle contacts
from Eq. (29), it is possible to obtain the solution numerically, and to compare it to the
classical Eτ = (1 + τ)−2 solution. Simulation results are compared to the theoretical
solution in Fig. 2 (left). The agreement between simulations and theory is almost
perfect in the examined range of tec values; only when deviations from homogeneity
are evidenced one expects disagreement between simulation and theory. The fixed
cut-off time tec has no effect when the time between collisions is very large tE � tec,
but strongly reduces dissipation when the collisions occur with high frequency t−1

E
>∼

(tec)
−1. Thus, in the homogeneous cooling state, there is a strong effect initially when

tc is large, but the long time behavior tends towards the classical decay E → Eτ ∝
τ−2.
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The next verification of the ED results obtained using the TC model involves compar-
ing them to DEM simulations, see Fig. 2 (right). Open and solid symbols correspond
to soft and hard sphere simulations, respectively, where the qualitative behavior (the
deviation from the classical HCS solution) is identical. The energy decay is delayed
due to multi-particle collisions, but later the classical solution is recovered. A quan-
titative comparison shows that the deviation of E from Eτ is larger for ED than for
DEM, given that the same tec is used. This weaker dissipation can be understood from
the strict rule used for ED: dissipation is inactive if any particle had a contact already.
The disagreement between ED and DEM is systematic and should disappear if an
about 30 per-cent smaller tc value is used for ED. The disagreement is also plausi-
ble, since the TC model disregards all dissipation for multi-particle contacts, while
the soft particles still dissipate energy — even though much less — in the case of
multi-particle contacts.

The above results show that the TC model is in fact a good method to approximate soft
particles behaviour with hard particles. The only modification made to straightforward
ED involves a reduced dissipation for (rapid) multi-particle collisions. More general
corrections and adaptations are the subject of ongoing work.

5 Micro-macro Transition for Particle Simulations

To analyse the static or dynamic behaviour of granular assemblies, bulk properties
such as the continuum (macro) fields of mass density ρ, velocity ~V , velocity gradient
∇~V and stress σ can be extracted from the discrete (micro) particle data. These fields
are related to each other via the equations of mass and momentum conservation,

∂ρ

∂t
+∇ · (ρ~V ) = 0, (30a)

∂(ρ~V )

∂t
+∇ · (ρ~V ⊗ ~V ) = −∇ · σ + ρ~g + ~t, (30b)

and thus the definitions of these fields should satisfy above equations. Here, we use
the compressive stress definition such that the pressure, p = tr(σ)/3, is positive under
compression. The body force density, ρ~g, accounts in this case for gravity, while the
external interaction force density, ~t, accounts for interactions of the bulk with external
objects, such as boundaries [WTLB12b] or drag relations with other constituents in a
mixed flow [WLT13].

While it is relatively straightforward to define these fields for homogeneous mixtures,
defining locally and temporally varying fields requires some care. Here, we present the
coarse-graining formulation [Bab97, Gol10, WTLB12b], where the field definitions
are constructed directly from equations (30) and thus satisfy them exactly.
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First, the macroscopic density is defined by

ρ(~r, t) =
N∑

i=1

miW (~r − ~ri(t)) , (31)

where we have replaced the Dirac delta function of the micromechanical density def-
inition, ρmic =

∑N
i=1miδ (~r − ~ri), by an integrable ‘coarse-graining’ function W

whose integral over the domain is unity and has a predetermined (non-dimensional)
width (or coarse-graining scale) w = w′/d, with the dimensional width w′, relative
to the particle diameter. The resolution and shape of the coarse-graining function
used in the formulation can be chosen freely, such that both microscopic and macro-
scopic effects can be studied. Many shape functions are possible, such as Gaussian
distributions or Lucy functions. While the shape of the coarse-graining function has
little effect on the macroscopic fields, they depend on the coarse-graining width, see
[WLT13] and section 6.3.

Next, the coarse-grained (CG) macroscopic momentum density is defined by

~p(~r, t) =

N∑

i=1

mi~viW(~r − ~ri), (32)

so that the macroscopic velocity field is defined as the ratio of momentum and density
fields,

~V (~r, t) = ~p(~r, t)/ρ(~r, t). (33)

Substituting (31) and (33) into (30a) and simplifying shows that the continuity equa-
tion is indeed satisfied, as shown in [Gol10, Bab97].

Finally, we consider the momentum conservation equation with the aim of establishing
the macroscopic stress field, σ. We split the stress

σ = σk + σc, (34a)

into its kinetic and contact contributions,

σk =
N∑

i=1

mi~v
′
i ⊗ ~v′iW(~r − ~ri), (34b)

σc = −
N∑

i=1

N+Nw∑

j=1

~fij ⊗~lij
∫ 1

0

W(~r − ~ri + s~lij) ds, (34c)

with interaction forces ~fij = −~fji and center-contact vectors ~lij = ~ri − ~cij , where
~cij denotes the contact point between the particle i and particle/wall j and where the
indicesN+1 toN+Nw denote contacts with external objects. Further, the fluctuation
velocity of particle i is defined by

~v′i(~r, t) = ~vi(t)− ~V (~r, t), (35)
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and the external interaction force density (IFD) is defined as

~t =

N∑

i=1

N+Ne∑

k=N+1

~fijW(~r − ~cij). (36)

Substituting (34-36) into (30b) shows that momentum conservation is exactly satisfied.
Thus, the results are valid even for single particles and at one moment in time, as
no ensemble averaging is required to satisfy the mass and momentum balance. This
was first shown in [Gol10] without considering body forces and external forces, and
in [WTLB12b] for the full system. One can continue to define other fields in this
fashion, such as heat flux and internal energy from the energy equation [Bab97], and
the couple stress from the conservation of local angular momentum [Gol10].

The definition of the stress tensor (34c) was shown to be unique under additional
symmetry requirements [WAD95]. Note that one can perform the integration in (34c)
analytically and obtain an explicit expression, hence the computational cost of this
formula is not more expensive than other expressions. Further note that the integral of
(34) over the whole volume V satisfies the virial definition of mechanical stress in a
volume V ,

σ =
1

V




N∑

i=1

mi~v
′
i ⊗ ~v′i −

N∑

i=1

N+Nw∑

j=1

~fij ⊗~lij


 . (37)

Averaging over a time interval ∆t and replacing the temporal average over the force
vector ~fij by the change of momentum ∆~pij for each collision of particle i with
particle/wall j in the time interval ∆t, one obtains for hard spheres [LM98, Lud98]

σ̄ =
1

V∆t



∫ t+∆t

t

N∑

i=1

mi~v
′
i ⊗ ~v′i dt−

N∑

i=1

N+Ne∑

j=1

∆~pij ⊗~lij


 , (38)

which connects the soft DEM models with the rigid ED models also on the macro-
scopic level.

6 Granular chute flow

Granular chute flows are investigated as first exemplary case, in the steady, continuous
inertial flow regime. The system, its flow-states and a closure for a shallow-layer
continuum model were described in more detail in [WTLB12a, WHTL13, TWLB12a,
TWOL13].

The following is a brief review of the more detailed results presented in [WHTL13].
Here, we describe the system setup and parameters in subsections 6.1 and 6.2. In
subsection 6.3, we investigate the sensitivity of the macroscopic fields on the width w.
Finally we discuss the resulting rheology in subsections 6.4 and 6.5.
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6.1 Model system

A Cartesian coordinate system is used where x denotes the flow direction, y the in-
plane vorticity direction, and z the height direction normal to the base. The parameters
of the system are non-dimensionalized such that the particles’ diameter is d̃ = 1, their
mass is m̃ = 1, and the magnitude of gravity is g̃ = 1, so that the unit of time
becomes tu =

√
d/g. For the sake of simplicity, the tilde indicating dimensionless

quantities is now dropped. The chute is inclined at an angle θ such that gravity acts in
the direction ~g = (sin θ, 0,− cos θ)T . The simulation cell has dimensions 20× 10 in
the x- and y-directions and is periodic in these directions. The base of the system is a
rough surface consisting of Ne fixed particles, see Figure 3 and Ref. [WTLB12a] for
details. N monodispersed flowing particles are introduced to the system at random
non-overlapping positions well above the base. Due to gravity they fall and accelerate
down the slope until they reach a steady state (before t = 2000). Macroscopic fields
are then extracted and analysed from the steady state data from t = 2000 to t = 2500.

B
BBN

g

Figure 3: Snapshot of steady-state inertial granular chute flow of N = 6000 flowing
particles over a rough surface inclined at θ = 28◦, with colour indicating speed. The
vertical slices show the density ρ(t, x, y, z) using a Lucy function of width w = 1/2.

6.2 Material and system parameters

We use a linear viscoelastic normal force model with sliding friction in tangential di-
rection. The dimensionless normal spring and damping constants are k̃ = 2 · 105 and
γ̃ = 50, respectively; thus, the contact duration for pair collisions is t̃c = 0.005 and
the coefficient of restitution is r = 0.88. The tangential spring and damping constants
are k t/k = 2/7 and γ t = γ, such that the frequency of normal and tangential contact
oscillation are similar, and the normal and tangential dissipation are comparable. The
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microscopic friction coefficient is set to µd = µs = 0.5. Contacts between two flow-
ing particles and between flowing and fixed base particles are treated equally. The sys-
tem is integrated using the Velocity-Verlet algorithm with a time step of dt = tc/50.
The simulations are implemented in MercuryDPM [TKdV+13, TKF+13, TWT].

6.3 Scale dependence of the macroscopic fields

Depth profiles for steady uniform flow are obtained using a Lucy coarse-graining func-
tion of width w, and averaging over x ∈ [0, 20], y ∈ [0, 10], and t ∈ [2000, 2500]. The
spatial averaging is done analytically, while we average in time with snapshots taken
every tc/2.

The macroscopic fields can vary strongly with w, which therefore has to be carefully
selected. According to Goldenberg et al. [GAC+06], each well-defined macroscopic
field should yield a plateau for a range of w-values, where the field (ideally) does
not depend on the coarse-graining scale w. For smaller w-values, statistical fluctua-
tions are strong and longer time-averaging or ensemble-averaging is required to ob-
tain useful data. For larger w, the coarse-graining is expected to cause an unphysical
smoothing of the field gradients.

Figure 4 shows the volume fraction profile, ν(z) = ρ(z)/ρp, for different w. A
plateau, as described above, exists for all heights in the range 0.0025 ≤ w ≤ 0.1.
On this length scale, the volume fraction is nearly independent of z, while oscillations
due to layering of the flow can be observed when approaching the base boundary. All
other macroscopic fields show a similar plateau.
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Figure 4: (Left) Density as a function of height, for w = 0.05 and w = 1. (Right)
Density at selected heights as a function of the coarse-graining width w. Circles and
crosses in both figures denote the density at the selected heights for w = 0.05 and
w = 1, respectively. Data is taken for N = 6000, θ = 28◦, as in Ref. [WHTL13].

Further, a second, wider plateau can be observed for 0.6 ≤ w ≤ 1 in the bulk of
the flow, further than 2w away from the wall. On this scale, the oscillations due to
layering are unresolved, which leads to smooth density, velocity and contact stress
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fields. Only the kinetic stress is scale-dependent, as first shown in [GG01]; however,
this scale-dependence can be quantified and removed [WHTL13].

6.4 Stress and boundary conditions

Assuming that the flow is steady and uniform, Eq. (30b) reduces to

∂

∂z
σαz = −ρgα − tα, α = x, y, z, (39)

which is in excellent agreement with the stress and external force density profiles [58].

Eq. (39) is called the lithostatic stress relation, since it determines (three) stress com-
ponents in terms of the density ρ. Since the external interaction force density, ~t, is
zero everywhere except within an coarse-graining length distance from the basal sur-
face, the slope of σαz equals−ρgα everywhere except near the base boundary. Due to
the momentum balance (39), both the bulk friction, µ = −σxz/σzz , and the friction
due to the interactions with the base, −tx/tz , are equal to tan θ and thus constant for
all heights. Further, in all simulations, the stress tensor was found to be nearly sym-
metric, with the asymmetric part contributing less than 0.1% to the deviatoric stress
components.

z

σzz

σzz−
∫∞
z

tzdz

−
∫∞
z

gzρdrz
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0

2

4

6

8

Figure 5: Downward normal stress, see inset, without (dashed) and with (solid) cor-
rection by the external IFD for w = 1/4. The extended stress, σ′zz = σzz −

∫∞
z
tz dz,

defined in (40) exactly matches the weight of the flow above height z (red dotted line),
as expected for steady flows. Grey vertical lines indicate bed and surface location, cal-
culated using the points where the extended stress definition vanishes and reaches its
maximum value (to within 2%), as in Ref. [WTLB12a].

Since the external interaction force density, ~t, is zero everywhere except close to the
basal surface, the gradients of ~t and σ are very steep at the base. Thus, ~t should
be incorporated into the continuum equation as a boundary condition rather than a
continuous field [WHTL13]. To accomplish this, we introduce the extended stress,

σext
αz = σαz +

∫ ∞

z

tαzdz , (40)

26 From soft and hard particle simulations to continuum theory for granular flows

ALERT Doctoral School 2017



which yields the boundary condition,

lim
z→−∞

σext
αz =

∫ ∞

−∞
tαzdz . (41)

Substituting (39) into (40) thus yields a simple relation between stress and density,

σext
αz =

∫ ∞

z

ρgαdz, lim
z→−∞

σext
αz =

∫ ∞

−∞
ρgαdz = Nmgα, (42)

which produces a smooth extended stress field, as shown in Figure 5.

6.5 Inertial number

A widely accepted basic rheological model for granular flows – in the dense, quasi-
static and inertial regimes – is the so-called µ(I)-rheology [dCEP+05, IK04, MiD04,
JFP06]. Many experimental and numerical studies suggest that the mass density ρ and
the macroscopic (bulk) friction µ are functions of the inertial number,

I = γ̇d
√
ρp/p, (43)

where γ̇ = ∂Vx

∂z is the shear rate, d the particle diameter, p the (compressive) pressure
and ρp the particle density, which is assumed constant for all heights.

Deriving the shear rate profile from the velocity field, we plot the inertial number as a
function of height in Figure 6. It shows that the inertial number is indeed constant in
the bulk, but varies significantly near both base and surface. Thus, we define the bulk
of the flow to be the region where I is within 10% of the median value.
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Figure 6: Inertial number plotted as a function of height, for w = 1, θ = 28◦ and
N = 6000, The dashed line shows the constant inertial number as predicted by the
µ(I) rheology.
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6.6 An objective description of the stress tensor

Next, we generalise the µ(I) rheology from a Cartesian frame to a rheological model
for general flow situations by using (objective) invariants of the tensors, and quantify
all non-Newtonian mechanisms that the chute flow features.

For a symmetric stress, when the σxy , σyz components are close to zero in steady
state, the orientation of the deviatoric stress tensor is determined solely by measuring
the orientation φσ of the largest principal stress in the xz-plane. Then the stress takes
the form [WHTL13, HGWL12]

σ = pI +R ·




λ1 0 0
0 λ2 0
0 0 λ3


 ·RT , (44)

with the transformation matrix

R =




cosφσ 0 sinφσ
0 1 0

− sinφσ 0 cosφσ


 (45)

where the second term is the deviatoric stress, with λ1 + λ2 + λ3 = 0. To quantify
the anisotropy of the stress tensor, we further decompose the deviatoric stress into: (i.)
the “anisotropy” of the deviatoric stress, i.e. the ratio of deviatoric stress (norm) and
pressure,

s?D :=
1√
6p

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2 , (46a)

see Ref. [TML]. (ii.) the anisotropic stress distribution between the principal direc-
tions,

Λ12 := −λ2/λ1, (46b)

and (iii.) the orientation of its eigensystem,

∆φ := φσ − φε, (46c)

where φε = 45◦ denotes the orientation angle of the strain rate tensor.

Thus, three objective variables are obtained that fully describe the deviatoric stress
tensor and thus determine the flow behaviour. For isotropic flows, we recover the
original µ(I) rheology where ∆φσ = 0, Λ12 = 0, σzz/p = 1 and s?D = µ(I).

Simulation results show that the flow rheology is indeed well-described by the inertial
number, as shown in figure 7. The anisotropy s?D, follows a similar curve as the
Cartesian bulk friction µ and is therefore fitted by the curve described in [MiD04].
However, the results show clearly, that non of the Newtonian flow assumptions is
satisfied. Λ12 deviates from their respective Newtonian values even for small inertial
numbers, while ∆φσ deviates from zero with increasing inertial number. Remarkably,
the simple µ(I)-rheology represents the dominant mechanism, while the others are
relatively small. A generalization for other flow situations is in progress [KLM14,
KIML13].
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Figure 7: Three objective variables that describe the deviatoric stress tensor, are plot-
ted against the inertial number I . Shade/color indicates relative height z from bottom
(blue) to top (red). Lines indicate fits to the bulk data as specified in the insets/keys.
Top: Angular deviation of the deviatoric stress from collinearity with the strain rate
tensor, ∆φσ , with linear fit. Middle: Ratio of eigenvalues Λ12 with linear fit. Bottom:
Magnitude of the deviatoric stress ratio, s?D, with the line a fit to the bulk data. Data
are bulk values from steady simulations in the parameter range 4000 ≤ N ≤ 8000,
20◦ ≤ θ ≤ 28◦, with coarse graining width w = 1, using the reduced kinetic stress
[WHTL13].
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6.7 Summary

In summary, the micro-macro transition has been successfully applied to steady, iner-
tial granular flows down an inclined plane. The fields are well defined (almost inde-
pendent of w) if the coarse-graining length-scale w is chosen carefully, either on the
particle scale w ∼ 1 or on the sub-particle resolution scale w ∼ 0.05. We discussed
the macroscopic fields and showed how to interpret the external interaction force den-
sity ~t as a boundary condition. The simulation results were then analysed to obtain an
objective and complete tensorial rheological model for steady, planar non-Newtonian
granular flows, involving all further non-Newtonian mechanisms (as possible in this
situation) on top of the classical µ(I)-rheology.

7 Vibrated granular bed

Our second example consists of a vertically vibrated bed of grains. In this case we
take the limit of hard-spheres and compare the macroscopic states obtained by ED
simulations with both previous experimental realizations and DEM simulations. We
compute the macroscopic fields of packing fraction, pressure and temperature from
both ED and DEM simulations using different coarse-graining methods. We then
study their agreement as a function of the DEM collision time parameter tc. Even
though the system presents highly packed regions, it is expected that the hard par-
ticle approximation does not have a big influence on the observed dynamics, as the
system is constantly fluidized, thus minimizing the influence of multi-particle con-
tacts. Indeed, a very good agreement between simulations and experiments is found,
as also between the macroscopic fields of both simulation approaches, given that a low
enough collision time (high enough stiffness) is used in the DEM simulations.

7.1 Model system

The system consists of a quasi-two-dimensional vibrated box with a base of variable
width lx, depth ly = 5d and infinite height, with d the diameter of the particles. The
container is vibrated sinusoidally such that the position of the base is given by b(t) =
A sin(ωt), with A and ω our parameters of energy injection. Previous experimental
and numerical studies have revealed a variety of non-equilibrium stable states, depen-
dent mainly on the amount of energy injection [TMLS89, EvdWvdM+07, RLT13].
Here we focus on the high energy injection limit, where a density inverted and hor-
izontally homogeneous state is present, usually referred to as granular Leidenfrost
state [EvdWvdML05]. We restrict our study to this state as it combines a high tem-
perature gaseous state with a low temperature dense state, two adequate limits to test
the micro-macro transition approaches and to compare the soft and hard MD models.
Previous studies have revealed that the phase-space in this high energy limit is better
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represented by the dimensionless shaking strength S ≡ A2ω2/gd, and the number of
filling layers F ≡ Nd2/lxly .

Collisions between particles are determined by a normal coefficient of restitution in
ED simulations, rED = 0.9. In the DEM case we use the linear spring-dashpot model
(see Eq. (3)), and set the stiffness k and viscous damping γ0 by choosing tc, the
typical collision time, and r, the coefficient of restitution, as given by Eqs. (4) and
(5). Naturally, we set r = rED, and tc is left as a free parameter. Lateral walls are
considered rigid and having the same collision parameters than between particles in
both types of simulations.

7.2 Experimental comparison

Figure 8: Phase space of the wide lx = 100d box geometry, forA = 4.0d and variable
ω. Circles correspond to ED simulations, while background is taken from experiments
presented in [EvdWvdM+07], where also the different states are carefully described.

As a first step of validation, ED simulation results are compared with previous ex-
perimental work done in a wide container [EvdWvdM+07], lx = 100d. In this case
we account for friction with a fixed coefficient µ = 0.1. The wide system presents
many distinct non-homogeneous stable states in the S-F space. For a detail analysis
of all states see Ref. [EvdWvdM+07]. Here we remark that ED simulations are able
to capture all observed behaviours, as shown in Fig. 8. Quantitatively, the phase space
obtained from ED simulations shows a remarkable agreement with the experimental
one, although there is a noticeable disagreement for some regions of transition. The
source of these disagreements can come from many factors: different effective resti-
tution and friction coefficients, the method for defining the different regions, as also
physical relevance of effects ignored in simulations, such as interstitial air or grain-
grain attractive forces.
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7.3 Leidenfrost state

Having verified that ED simulations are in good agreement with physical experiments,
we now turn our attention to the relation of both simulational methods, ED and DEM.
The macroscopic states are compared by computing the packing fraction φ; the kinetic
pressure p = tr(σk)/3, with the kinetic stress tensor defined in (34b); and the granular
temperature T = 1

3 (〈~v2〉 − 〈~v〉2). The system is further constrained by setting lx =
5.0d, as we are only interested in studying the horizontally homogeneous Leidenfrost
state. In this limit all horizontally inhomogeneous states are suppressed, including the
buoyancy-driven convective states expected for higher S [RLT13]. Furthermore, we
set F = 12 (which implies a total number of particles N = 300) and A = 1.0d.
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Figure 9: Time averaged packing fraction profiles φ(z) for different tec, as specified in
the labels, with A = 1.0d and ω = 2.0
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√
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values of tec ≤ 10−4 curves are seen to converge and are superimposed.

In ED simulations the TC model is used, both to prevent inelastic collapse and com-
pare with the finite collision time of DEM simulations, as elaborated in Section 4. As
tec is reduced, the macroscopic fields converge, as shown in Figure 9 for the averaged
packing fraction vertical profile, φ(z). There is no significant difference between the
low and high energy injection limits, both converging for τc ∼ 10−5, the value taken
for the following simulations.

It is important to remark that macroscopic fields are not computed using the same
procedure; it is also the purpose of the following work to see how both approaches
compare. In the ED case, instantaneous macroscopic fields are obtained by coarse
graining space in rectangular bins and computing the relevant quantities by averaging
over the bins; after that, time-average is done for at least 10000 oscillation cycles. On
the other hand, in DEM simulations the fields are obtained using the homogenization
procedure described in Section 5, and with more detail in [WTLB12a]. The homoge-
nization is done for the relevant quantities of density and momentum, from which the
other fields can be directly obtained. Then, time-averaged totals can be obtained either
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as an average of each instantaneous field, or from the time-averaged fields of velocity
and density; in our case, we choose the latter method, except with the temperature
field where both approaches are compared, as they present significant differences. In
both cases, care is taken to acquire data with a sub-period resolution of 0.05T , in order
to prevent aliasing errors.

Figure 10 shows the time averaged vertical profiles 〈φ(z)〉t, 〈P (z)〉t and 〈T (z)〉t for
both ED and DEM simulations with S = 100. The collision time tc is modified in
order to see how macroscopic fields depend on it. They correspond to 5, 10, to 50
times the collision time, for tc = 0.1, tc = 0.05 and tc = 0.01, respectively.

Figure 10: (a) Time averaged packing fraction vertical profiles for ED simulations
(black) and soft-particle simulations with tc = 0.1 (red circles), tc = 0.05 (green
squares) and tc = 0.01 (blue diamonds). (b) Time averaged pressure vertical profiles,
with the same color code. (c) Time averaged granular temperature vertical profiles,
with the same color code. Open symbols corresponds to the fluctuating time-averaged
velocities, while filled ones show the time-averaged fluctuating velocity, as detailed in
the main text.

Remarkably, the packing fraction fields coincide to within 0.1% already for tc = 0.05.
The profiles are remarkably similar even for high tc, although the effect of decreasing
the collision time is considerable, specially in highly packed regions, as also near
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the bottom of the container, that is, in the highly agitated region. At the bottom of the
container, softer particles would over predict the time of collision with the fast moving
bottom plate, and thus a low tc is needed to approach the hard sphere limit.

The total pressure, on the other hand, presents a more pronounced difference for higher
values of tc, although there is already only a 3% disagreement between both schemes
for tc = 0.05. Reducing tc further leads to a better overall agreement, although the
pressure in the gaseous zone is still considerably lower than in the hard-sphere limit.

The temperature field presents a considerably higher disagreement between ED and
MD simulations for higher values of tc. This could be due to many factors. Mainly,
the time-averaging of the fields in the SP case may have a big influence on a highly
fluctuating quantity such as temperature. The fluctuations come mainly from the de-
pendency on the inverse of density, which can have very low values instantly, but not
in the long time average. The difference between the different time average schemes
is shown in dashed and solid lines, respectively: it is clear that computing the temper-
ature at each frame from the density and velocity fields, and then averaging over the
whole simulation, leads to a better agreement for all tc (Figure 10c). Nevertheless,
both profiles always present the same overall behaviour, and the agreement is again
good for tc = 0.001.

7.4 Summary

In the case of collisional systems, with rather high packing fractions, ED simulations
present a surprisingly good agreement with previous experiments of a highly agitated
granular bed, and also agree very well with DEM simulations with rather hard par-
ticles. A low enough tc is needed to accurately match the conserved hydrodynamic
fields, especially when different time-averaging schemes play a role, such as with
the granular temperature. It is important to remark that even though the density and
pressure can present remarkably similar profiles for a given tc, the corresponding tem-
perature field can be considerably over-predicted in DEM simulations. Overall, we see
that the hard-particle limit and event-driven simulations present an excellent alterna-
tive for the simulation of fluidized, yet quite dense, granular systems, usually being
orders of magnitude faster than DEM simulations.

8 Discussion and Conclusion

A summary of soft particle molecular dynamics (referred to as discrete element meth-
ods (DEM) in some fields of engineering), and hard particle event-driven (ED) simu-
lations was given. The two approaches were compared in various situations, from di-
lute/collisional to dense, inertial chute flows. The less dynamic, quasi-static regimes
are addressed in Refs. [TML, DS]. In the dilute regime both methods are identical
while in denser situations, the finite contact duration time and multi-particle contacts
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become relevant. Those contacts are readily modeled in DEM, see also Ref. [Mar],
but not in ED. An extension of ED involves a new time-scale over which collisions
between particles are considered elastic, both to avoid the divergence of the num-
ber of collisions per unit time and to model the natural fact of finite collision times,
an approach referred to as the TC (time/duration of contacts) model. An alternative
simulation method is contact dynamics (CD), which was addressed in Ref. [Rad].
Furthermore, a methodology for relating the particle properties from particle simula-
tions to the state variables and fields in continuum models has been presented, with
more details and practical exercises presented in Ref. [TWT]. This micro-macro tran-
sition was defined for the density, velocity, velocity gradient, stress and temperature
fields via the coarse graining approach, which ensures that mass, momentum and en-
ergy balance are exactly preserved. Additional fields like the structure tensor (fabric),
couple-stress, rotations, and curvature were not considered here but are subject of
ongoing research.

Given any type of particle simulation method, DEM, ED, CD or others, but also given
experimental data, the coarse-graining procedure to obtain conserved fields from par-
ticle simulations depends on a critical parameter w, the length-scale of the kernel
(smoothing) function. Using granular flows down an inclined plane as reference sys-
tem, we have observed that the choice of w for a particular system can be justified
by determining its scale-dependence, and identifying scales that are insensitive to the
choice of w. Similarly, coarse-graining in time requires a similar approach with a
time-scale tw. Furthermore, an interaction force density has been introduced, that can
capture the boundary conditions of the bulk flow, as well as drag relations with other
constituents in a mixed flow (not shown, data to be presented elsewhere). Situations
where the w- or tw-dependence persists (in either space or time, or both) can relate
to either flows with micro-structure or transients and are subject to ongoing studies.
Note that the micro-macro methodology is valid, but such cases will display strong
fluctuations and require further research.

Given one has a steady state situation with a w-independent plateau, one can proceed
further and accumulate continuum fields with good statistics and quality from a single
simulation. The methodology permits the definition of a complete (tensorial) rheolog-
ical model for steady, planar non-Newtonian granular flows from particle simulations.
The stress is decomposed as: (i) the isotropic pressure, (ii) the anisotropy, i.e., the
ratio of deviatoric stress and pressure, (iii) the anisotropic stress distribution between
the principal directions, and (iv) the difference in orientation of tensor eigen-systems.
Using the coarse graining methodology in a chute-flow system, we have seen that the
rheology deviates from a Newtonian fluid behaviour not only due to its pressure- and
strain-rate-dependent viscosity (the well-known macroscopic friction referred to as the
µ(I)-rheology), but also has a non-trivial anisotropic stress distribution and a slight
lag between the orientation of the stress and the strain rate tensor. These effects need to
be taken into account for any truly quantitative prediction of granular flow behaviour;
even though being small for chute flows, we expect them to be more important in other
situations as, e.g., situations with strain reversal and transient regimes.
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Hard-sphere, event-driven (ED) simulations were compared with both previous ex-
perimental realizations and soft-particle simulations of a highly agitated granular bed.
ED simulations are able to capture the whole spectrum of behaviors observed in the
quasi-two-dimensional vibrated system as the energy is increased, from low to very
high energy inputs, the phase-space even presenting good quantitative agreement. The
TC model, an approach to solve the inelastic collapse problem and model the softness,
i.e. the finite collision times, with perfectly hard spheres, was studied in this highly
agitated limit, and the parameters needed to obtain convergence were determined. In
such situations, ED and DEM simulation approaches coincide remarkably well in their
macroscopic fields, given that a low enough collision time is set in DEM simulations,
especially for the computation of the most sensitive field: the granular temperature.

In conclusion, discrete element methods (soft or hard) are a helpful tool to understand-
ing many granular, particulate, powder or geo-materials. The same ideas and methods
can also be applied to atomistic systems [HGWL12, HTL13]. The micro-macro meth-
ods presented in this paper can be applied to both DEM and ED simulation results, but
also to CD or experimental data. The overall goal to obtain micro- and particle-based
constitutive relations for continuum theory has seen many success-stories but not all
challenges have been addressed so far and many open questions remain. The qualita-
tive approach of using DEM in the early years has now developed into the attempt of
a quantitative predictive modelling tool for the diverse modes of complex momen-
tum and energy transport in granular media, industrial and natural, environmental
processes and phenomena. To achieve the goal of a micro-based macro-theory will
remain a research challenge for the next decade, involving enhanced kinetic theories
for dense collisional flows and elaborate constitutive models for quasi-static, dense
systems with, e.g., shear band localisation. In the future this will allow to better un-
derstand, to better design/optimize and to impose the desired behavior, with particular
applications in mind as, e.g., modern sintered materials, reactors involving catalysts,
tabletting, selective laser-sintering, and many others. This concerns not only man-
made processes and flows but also natural phenomena like avalanches, land-slides or
civil engineering issues like slow creep or instabilities of foundations.
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The contact dynamics (CD) method

F. Radjai
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Cambridge, USA

This chapter provides a brief description of the contact dynamics (CD) method as a
discrete element approach for the simulation of granular materials. The mathemat-
ical formulation of this method involves only particle displacements and velocities,
thus neglecting elastic response times and deflections at the contact points. Two main
ingredients of the method are detailed: i) the contact laws expressed as complemen-
tarity relations between the contact forces and velocities and ii) the nonsmooth motion
involving velocity jumps with impulsive unresolved forces as well as smooth motion
with resolved static forces. We show that a consistent description of the dynamics at
the velocity level leads to an implicit time-stepping scheme together with an explicit
treatment of the evolution of the particle configuration.

1 Introduction

Granular materials are of primary importance in a variety of scientific and technolog-
ical areas such as soil mechanics, geological processes and flows, soft matter physics,
powder technology and agronomy. Frictional-contact interactions between particles
and physical and/or chemical effects of an interstitial fluid or solid material lead to
a nonlinear rheological behavior that has not yet been fully formulated in the frame-
work of a continuum theory. In particular, the state variables in quasi-static and/or
inertial granular flows and their evolution with shear strain rate and amplitude reflect
the complex evolution of the contact network, and still need to be clearly identified
and included in a continuum description of the flow behavior of granular materials,
see also Refs. [TLM17, DS17, LRW17, TWT17] by the lecturers of the Alert 2017
school.

The particle-scale modeling of granular materials was considerably reinforced by the
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application of the Discrete Element Method (DEM) for the simulation of particle dy-
namics [CS79, TY91, Her93, Tho93, PB95, Tho97, Lud98, MLH99, MH04, aM07,
GRC07, RRY07]. The DEM [LRW17] is based on the step-wise integration of the
equations of motion for all particles, described as rigid elements, by accounting for
contact interactions [LRW17, Mar17] and boundary conditions [CR17, TLM17]. The
DEM can also be seen as an application of the Molecular Dynamics (MD) method
to rigid particles. The event driven (ED) method for rigid particles, as described in
[LRW17], can only deal with dynamic collisions, while the CD described below is
able to deal with both dynamic and static situations for rigid particles. Modeling per-
fectly rigid particles (ED, CD) involves only their rigid-body degrees of freedom, but
the application of classical explicit integration methods (MD, DEM) requires a regular
(smooth) force law at the contact point between two particles with a contact deflection
defined from their overlap. Generally, the repulsive force is considered to be pro-
portional to the overlap and a viscous damping term is added to account for inelastic
collisions.

A new approach to discrete particle modeling emerged from a mathematical formu-
lation of nonsmooth dynamics and algorithmic developments by J. J. Moreau and M.
Jean [Mor77, Mor83, Mor88a, Mor88b, Mor93, Mor94, JP85, Jea88, JM92]. This ap-
proach, called Contact Dynamics (CD), is based on a nonsmooth formulation of parti-
cle dynamics in the sense that the particle velocities and contact forces are simultane-
ously computed at each time step from the balance of momenta by taking into account
the unilateral contact interactions and Coulomb friction law, hence without introduc-
ing contact deflection and a repulsive potential. The mathematical concepts and tools
for the treatment of nonsmooth dynamics were developed in relation with mechanical
problems involving unilateral constraints and in the context of convex analysis; see
[Bro99] for a detailed history. The multicontact feature is present in static states and
in dense flows of granular materials where spatial correlations occur at large length
scales and impulse dynamics is mixed with smooth particle motions at different time
scales [PBL02, RR02, SGL02, SVR02, Pou04, MB05, AR07, BDMS07, OT07].

The CD method has been applied to investigate granular materials [Mor97, RJMR96,
RWJM98, BRH02, RR02, SVR02, NLCV03, RDA04, MH04, TCRB05, SCG+06,
ARPS07, RWU07], as well as masonry and tensegrity structures [AJ98, NAD06]. For
static and plastic shear properties, the CD simulations agree well with MD simulations
[REBR95, Mor97, RSDW97, Rad99, LJ00, RR04]. The main difference between the
two methods in application to granular materials is the resolution of elastic time scales
in the MD/DEM method in contrast to the CD/ED methods in which the natural time
unit is imposed by particle dynamics and external actions [RSDW97, MH04, MH06].

In this chapter, we present the CD method as a consistent model of nonsmooth and
multicontact granular dynamics expressed more specifically in the contact coordi-
nates.
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2 Contact laws

Consider two particles i and j touching at a contact point κ inside a granular material.
We assume that a unique common line (here in 2D, for 3D see [LRW17]) tangent to
the two particle surfaces at κ can be defined. The contact can therefore be endowed
with a local reference frame defined by a unit vector ~n normal to the line and a unit
vector ~t along the line.

i

j

!c κ
i

!c κ
j

!nκ!t κ

κ

Figure 1: A contact κ between two non-spherical particles i and j with contact vectors
~cκi and ~cκj , and contact frame (~nκ,~tκ).

A potential (or prospective) contact exists if the gap δn between two particles (part-
ners) is sufficiently small so that a collision may occur between the two particles
within a small time interval δt (time step in numerical simulations). If the contact
is effective (δn = 0), a repulsive (positive) normal force fn may appear at κ with a
value depending on the particle velocities and forces exerted on the two partners by
their neighboring particles; see Fig. 1. But if δn > 0 (nonzero gap), the contact is
not effective and fn is identically zero. These conditions can also be represented by
the “complementarity relations” δn ≥ 0, fn ≥ 0 and δnfn = 0 or be cast into the
so-called Signorini inequalities:

{
δn > 0 ⇒ fn = 0
δn = 0 ⇒ fn ≥ 0 .

(1)

Note that the positive δn here means a separation of the particles, whereas in most
literature on DEM and smooth contact laws separation means δDEM

n < 0, while me-
chanical contacts are associated with overlaps δDEM

n > 0 [LRW17]. In contrast to
simple DEM contact laws like linear or Hertz [LRW17, Mar17], this relation can not
be reduced to a (mono-valued) functional dependence between δn and fn.

The above conditions imply that the normal force vanishes when the contact is not
effective. However, the normal force may also vanish at an effective contact. This
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is the case for un = δ̇n > 0, i.e. for incipient opening of a contact. Otherwise,
the effective contact is persistent and we have un = δ̇n = 0. Hence, Signorini’s
inequalities can be extended as follows:





δn > 0 ⇒ fn = 0

δn = 0 ∧
{
un > 0 ⇒ fn = 0
un = 0 ⇒ fn ≥ 0

(2)

This means that for δn = 0, Signorini’s inequalities hold between the variables un and
fn.

In the same way, the Coulomb friction law at an effective contact can be expressed by
a set of inequalities for the friction force ft and sliding velocity ut:





ut > 0 ⇒ ft = −µfn
ut = 0 ⇒ −µfn ≤ ft ≤ µfn
ut < 0 ⇒ ft = µfn

(3)

where µ is the friction coefficient. It is assumed that the unit tangent vector ~t points in
the direction of sliding velocity such that ~ut · ~t = ut. Coulomb’s friction law can not
be reduced to a (mono-valued) functional dependence between ut and ft.

Figure 2 displays Signorini’s inequalities (2) and Coulomb’s friction law (3) for an
effective contact. The force laws employed in MD may be considered as regulariza-
tions of the above contact laws with their vertical branches replaced by steep linear or
nonlinear functions.

un

fn

0

ut

ft

0

µfn

−µfn
(a) (b)

Figure 2: Graphs of (a) Signorini’s inequalities and (b) Coulomb’s friction law.

The use of ‘nonsmooth’ contact laws in the CD method is consistent with a discrete
model of particle motions involving no sub-particle length scale or inherent force
scale. But such a coarse model of particle motion implies nonsmooth dynamics, i.e.
possible discontinuities in particle velocities and forces due to collisions (like in ED
[LRW17]) and variations of the contact network (which does not exist in ED). Hence,
the approximation of the contact force fn during a time step δt is a measure problem
in the mathematical sense [Mor94, Mor04]. A resolved force fs is the density of the
measure fs dt with respect to time differential dt. In contrast, a normal impulse p
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generated by a collision has no density with respect to dt. In other words, the forces
at the origin of the impulse are not resolved at the scale δt. In practice, however, we
do not differentiate between these contributions in a coarse (particle-scale) dynamics,
and the two contributions sum up to a single measure. The contact force is defined as
the average of this measure over δt.

In a similar vein, the left (pre-collision) velocities u−n and u−t at time t are not always
related by a smooth variation (acceleration multiplied by time step δt) with the right
(post-collision) velocities u+n and u+t at t+ δt. Hence, the contact laws (2) and (3) are
assumed to be satisfied for a weighted mean of the left and right contact velocities:

un =
u+n + en u

−
n

1 + en
, (4)

ut =
u+t + et u

−
t

1 + |et|
. (5)

For a binary collision, see also [LRW17], the normal force is nonzero, and Signorini’s
graph implies un = 0. Therefore, we have −u+n /u−n = en. Hence, the coefficient
en corresponds to the normal restitution coefficient. In the same way, for ut = 0,
corresponding to a non-sliding contact we have −u+t /u−t = et, that coincides with
the tangential restitution coefficient. We see that, when Signorini’s and Coulomb’s
graphs are used with the formal velocities given by equation (5), a contact is persistent
(u+n = 0) only if en = 0.

In a dense granular flow, the collisions are not binary, and the generated impulses prop-
agate through the contact network. For this reason, a contact may experience many
successive impulses during δt. Such events can be resolved for a sufficiently small
time interval δt or tracked by means of an event-driven scheme [LRW17]. However,
this strategy is numerically inefficient, and contradicts the spirit of the CD method
based on coarse-time dynamics. Hence, the use of intermediate velocities (5) with
contact laws is a generalization of restitution coefficients to multiple collisions and
contact networks. In this model, the right velocities u+n and u+t (at the end of a time
step) are not given by the left velocities multiplied by the coefficients of restitution as
in binary collisions but by combining the contact laws with the equations of dynamics.

3 Nonsmooth dynamics

The particle motions are governed by Newton’s equations under the action of exter-
nal bulk or boundary forces ~Fext, and the contact forces ~fκ exerted by neighboring
particles at the contact points κ. Let unit vectors (x̂, ŷ) represent a reference frame in
the plane and ẑ = x̂× ŷ be the normal to the plane. Each particle is characterized by
its mass m, moment of inertia I , mass center coordinates ~r, mass center velocity ~U ,
angular coordinates θ with respect to ẑ, and angular velocity ω. For a smooth motion
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(twice differentiable), the equations of motion (2D) of a particle are

m ~̇U = ~F + ~Fext
I ω̇ = M+Mext ,

(6)

where ~F =
∑
κ
~fκ andM =

∑
κ ~c

κ × ~fκ where ~cκ is the contact vector joining the
center of mass to the contact κ andMext represents the moment of external forces.

For a nonsmooth motion with time resolution δt involving impulses and velocity
jumps, an integrated form of the equations of dynamics should be used. Hence, the
equations of dynamics should be written as an equality of measures:

m d~U = d~F ′ + ~Fext dt
I dω = dM′ +Mext dt ,

(7)

where d~F ′ =
∑
κ d

~f ′κ and dM′ = ∑κ ~c
κ × d~f ′κ. These measure equations can be

integrated over δt with ~F andM as approximations of the integral of d~F ′ and dM′.
With these definitions, we have

m (~U+ − ~U−) = δt ~F + δt ~Fext
I (ω+ − ω−) = δtM+ δtMext ,

(8)

where (~U−, ω−) and (~U+, ω+) are the left and right velocities of the particle, respec-
tively, at each time step.

The equations of dynamics can be written in matrix form for a set of Np particles la-
beled with integers i ∈ [1, Np]. The forces and force moments F ix, F

i
y,Mi acting on

the particles i are arranged in a column vector represented by a boldface letter F and
belonging to R3Np . In the same way, the external bulk forces Fext,x, Fext,y,Mext ap-
plied on the particles and the particle velocity components U ix, U

i
y, ω

i are represented
by column vectors Fext and U, respectively. The particle masses and moments of
inertia define a diagonal 3Np × 3Np matrix denoted by M. With these notations, the
equations of dynamics (8) are represented by the matrix equation

M(U+ −U−) = δt(F+ Fext) . (9)

4 Contact dynamics equations

Since the contact laws involve contact variables (un, ut, fn and ft), we need to express
the equations (9) in the same terms of the same variables. The contacts are labeled with
integers κ ∈ [1, Nc], whereNc is the total number of contacts. Like particle velocities,
the contact velocities uκn and uκt can be collected in a column vector u ∈ R2Nc . In
the same way, the contact forces fκn and fκt are represented by a vector f ∈ R2Nc . We
would like to express the equations of dynamics in terms of f and u. Since the contact
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velocities u are linear in particle velocities U, the transformation of the velocities is
an affine transformation:

u = GU (10)

where G is a 2Nc × 3Np matrix carrying the information on the geometry of the
contact network. A similar linear transformation relates f to F:

F = H f (11)

where H is a 3Np × 2Nc matrix. We refer to H as contact matrix. It contains the
same information as G. It can be shown that H = GT where GT is the transpose
of G. This property can be inferred from the equivalence between the virtual power
F ·U developed by “generalized” forces F and the virtual power f · u developed by
the bond forces f . In general, the matrix H is singular and, by definition, its null space
has a dimension at least equal to 2Nc − 3Np.

The matrix Hiκ can be partitioned into two matrices Hiκ
n and Hiκ

t such that

uκn =
∑
i

HT,κi
n U i

uκt =
∑
i

HT,κi
t U i

(12)

and
F i =

∑

κ

(Hiκ
n fκn +Hiκ

t fκt ) (13)

Using these relations, (9) can be transformed into two equations for each contact κ:

uκ+n − uκ−n = δt
∑
i,j

HT,κi
n M−1,ij

×{∑
λ

(Hjλ
n fλn +Hjλ

t fλt ) + F jext}

uκ+t − uκ−t = δt
∑
i,j

HT,κi
t M−1,ij

×{∑
λ

(Hjλ
n fλn +Hjλ

t fλt ) + F jext}

(14)

We now can write down explicit linear relations between the contact variables from
equations (14) and (12). Let us set

Wκλ
k1k2 =

∑

i,j

HT,κi
k1

M−1,ijHjλ
k2
, (15)
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where k1 and k2 stand for n or t. With this notation, (14) can be rewritten as

1 + en
δt

(uκn − uκ−n ) = Wκκ
nnf

κ
n +Wκκ

nt f
κ
t

+
∑

λ(6=κ)
{Wκλ

nnf
λ
n +Wκλ

nt f
λ
t }

+
∑

i,j

HT,κi
n M−1,ijF jext (16)

1 + et
δt

(uκt − uκ−t ) = Wκκ
tn f

κ
n +Wκκ

tt f
κ
t

+
∑

λ(6=κ)
{Wκλ

tn f
λ
n +Wκλ

nt f
λ
t }

+
∑

i,j

HT,κi
t M−1,ijF jext (17)

The coefficientsWκκ
k1k2

for each contact κ can be calculated from the contact network
geometry and inertia parameters of the two partners 1κ and 2κ of the contact κ. Let ~cκi
be the contact vector joining the center of mass of particle i to the contact κ. We get

Wκκ
nn =

1

m1κ

+
1

m2κ

+
(cκ1t)

2

I1κ
+

(cκ2t)
2

I2κ
,

Wκκ
tt =

1

m1κ

+
1

m2κ

+
(cκ1n)

2

I1κ
+

(cκ2n)
2

I2κ
, (18)

Wκκ
nt = Wκκ

tn =
cκ1nc

κ
1t

I1κ
+
cκ2nc

κ
2t

I2κ
,

where cκin = ~cκi · ~nκ and cκit = ~cκi ·~tκ are the components of the contact vectors in the
contact frame. The coefficientsWκκ

k1k2
are inverse reduced inertia.

An alternative representation of equations (16) and (17) is

Wκκ
nnf

κ
n +Wκκ

nt f
κ
t = (1 + en)

1

δt
uκn + aκn, (19)

Wκκ
tt f

κ
t +Wκκ

tn f
κ
n = (1 + et)

1

δt
uκt + aκt . (20)

The two offsets aκn and aκt can be expressed from equations (16) and (17). We refer
to equations (19) and (20) or, equivalently, to equations (16) and (17) as contact dy-
namics equations as they replace the equations of dynamics for the particles; see Fig.
3 [RR09].
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The two terms an and at are given by the following expressions:

aκn = bκn − (1 + en)
1

δt
uκ−n +

(
~F 2κ
ext

m2κ

−
~F 1κ
ext

m1κ

)
· ~nκ. (21)

aκt = bκt − (1 + et)
1

δt
uκ−t +

(
~F 2κ
ext

m2κ

−
~F 1κ
ext

m1κ

)
· ~tκ. (22)

The contribution of left velocities (uκ−n , uκ−t ) appears in these equations as an impulse
depending on the reduced mass and the restitution coefficient. The contribution of
contact forces ~fλi acting on the two touching particles are represented by the terms bκn
and bκt given by

bκn =
1

m2κ

∑

λ(6=κ)

~fλ2κ · ~nκ −
1

m1κ

∑

λ( 6=κ)

~fλ1κ · ~nκ, (23)

bκt =
1

m2κ

∑

λ(6=κ)

~fλ2κ · ~tκ −
1

m1κ

∑

λ( 6=κ)

~fλ1κ · ~tκ. (24)

The contact dynamics equations (19) and (20) define a system of two linear equations
between the contact variables at each contact point. For given values of an and at at a
contact, the contact laws (2) and (3) should also be satisfied. Hence, the solution is at
the intersection between the straight line (19) and Signorini’s graph on one hand, and
between (20) and Coulomb’s graph, on the other hand.

5 Iterative resolution

To solve the system of 2Nc contact dynamics equations (in 2D) with the corresponding
contact laws, we proceed by an iterative method which converges to the solution si-
multaneously for all contact forces and velocities. We first consider the single-contact
problem that consists in calculating the contact variables fκn , fκt , uκn and uκt at a single
contact given the values of the offsets aκn and aκt at the same contact. The solution
is given by intersecting the lines representing contact dynamics equations with Sig-
norini’s and Coulomb’s graphs; see Fig. 3. The intersection occurs at a unique point
due to the positivity of the coefficientsWκκ

k1k2
(positive slope).

However, the two intersections can not be established separately whenWκκ
nt 6= 0. To

find the solution, one may consider the intersection of contact dynamics equations
with the force axis, i.e. by setting un = ut = 0. This yields two values gκn and gκt of
fκn and fκt , respectively:

gκn =
Wκκ
tt a

κ
n −Wκκ

nt a
κ
t

Wκκ
nnWκκ

tt − (Wκκ
nt )

2
, (25)

gκt =
Wκκ
nna

κ
n −Wκκ

tn a
κ
t

Wκκ
tt Wκκ

nn − (Wκκ
tn )2

. (26)
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Figure 3: Solution of the local equations of dynamics obtained from the intersection
between contact dynamics equations (CDE) and the Signorini and Coulomb contact
laws.

It can be shown that the denominator is positive. If gκn < 0, then the solution is
fκn = fκt = 0. This corresponds to a breaking contact. Otherwise, i.e. if gκn ≥ 0, we
have fκn = gκn. With this value of fκn , we can determine the solution of the Coulomb
problem. If gκt > µfκn , the solution is fκt = µfκn and in the opposite case, i.e. if
gκt < −µfκn , the solution is fκt = −µfκn (sliding contact). Otherwise, i.e. when
−µfκn < gκt < µfκn , the solution is fκt = gκt (rolling contact).

In a multi-contact system, the contributions of bκn and bκt to the offsets aκn and aκt de-
pend on the forces and velocities at contacts λ 6= κ; see equations (21), (22), (23) and
(24). Hence, the solution for each contact depends on all other contacts of the system
and it must be determined simultaneously for all contacts. A robust method consists in
searching the solution as the limit of a sequence {fκn (k), fκt (k), uκn(k), uκt (k)} with
κ ∈ [1, Nc]. Let us assume that a temporary set of contact forces {fκn (k), fκt (k)}
at iteration step k is given. From this set, the offsets {aκn(k), aκt (k)} for all contacts
can be calculated through the relations (21) and (22). The local problem can then be
solved for each contact κ with these values of the offsets, yielding an updated set of
contact forces {fκn (k + 1), fκt (k + 1)}.
This force update procedure does not require the calculation of contact velocities
uκn(k + 1), uκt (k + 1)} since the offsets depend only on the contact forces. The set
{fκn (k), fκt (k)} evolves with k by successive corrections and it converges to a solution
satisfying the contact dynamics equations and contact laws at all potential contacts of
the system. The iteration can be stopped when the set {fκn (k), fκt (k)} is stable with
regard to the force update procedure within a prescribed precision criterion εf :

| fκ(k + 1)− fκ(k) |
fκ(k + 1)

< εf ∀κ. (27)

Finally, from the converged contact forces, the particle velocities {~U i} can be com-
puted by means of the equations of dynamics (8).

This iterative procedure provides a robust method which has proven efficient in appli-
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cation to the dynamics of granular materials. The information is treated locally and
no large matrices are manipulated during iterations. The number Ni of necessary it-
erations for convergence depends on the precision εf but not on the time step δt. The
number of necessary iterations is substantially reduced when the iteration at each time
step is initialized with a good guess of the forces such as those computed in the pre-
ceding step. On the other hand, the time step should be small enough to avoid large
overlaps although such overlaps are not elastic deflections as in the MD method.

The uniqueness of the solution in a multi-contact system with rigid particles is not
guaranteed at each step of evolution. There are 3Np equations of dynamics and 2Nc
contact relations. The unknown variables are the 3Np particle velocities and 2Nc con-
tact forces. The indeterminacy arises from the fact that the 2Nc contact relations are
inequations. Thus, the extent of indeterminacy of the solution reflects all possible
combinations of contact forces accommodating the contact inequations. The inde-
terminacy may be high, but it does not imply significant force variability since the
solutions are strongly constrained by contact laws. In practice, as a result of finite
numerical precision, the risk of not finding a mechanically admissible solution (satis-
fying both the contact laws and equations of dynamics) is higher than that of missing
the right solution. In other words, the variability of the solution is generally below
the precision εf when the forces are computed at each time step from the forces at the
preceding step.

6 Time-stepping scheme

The time-stepping scheme is based on the fact that Signorini’s condition (2) for parti-
cle positions is the only condition referring to space coordinates. Both the equations
of dynamics and contact laws are formulated at the velocity level, and Signorini’s con-
dition for particle positions is accounted for by considering only the effective contacts
where δn = 0. Hence, the contact network is defined explicitly from particle positions
and it does not evolve during a time step δt. But the iterative determination of forces
and velocities is fully implicit, and the right (new) velocities {~U i+, ωi+} at the end of
a time step should be used to increment particle positions.

Let t and t+δt be the considered time interval. The configuration {~ri(t)} and particle
velocities {~U i(t), ωi(t)} are given at time t. These velocities coincide with the left
velocities {~U i−, ωi−}. The contact network {κ, ~nκ,~tκ} is set up from the particle
configuration at time t or from an intermediate configuration {~rim} defined by

~rim ≡ ~ri(t) +
δt

2
~U i(t). (28)

When this configuration is used for contact detection, other space-dependent quanti-
ties such as the inverse mass parametersWκκ

k1k2
and external forces ~F iext should con-

sistently be defined for the same configuration and at the same time t + δt/2. Then,
the forces and velocities are iteratively determined for this configuration, and the new
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particle velocities {~U i+, ωi+} are calculated. These are the velocities at the end of the
time step t+ δt:

~U i(t+ δt) = ~U i+, (29)
ωi(t+ δt) = ωi+. (30)

Finally, the positions are updated by integrating the updated velocities:

~ri(t+ δt) = ~rim +
δt

2
~U i(t+ δt), (31)

θi(t+ δt) = θim +
δt

2
ωi(t+ δt). (32)

This scheme is unconditionally stable due to its inherent implicit time integration.
Hence, no damping parameters at any level are needed and the time step δt can be
large. The real limit on the time step is imposed by the cumulative round-off errors in
particle positions, which are updated from the integration of the velocities. Although
excessive overlaps have no dynamic effect in the CD method, they can falsify the
particle configuration and the long-term evolution of the system. Note that the time
step in the CD method is not a precision parameter but a temporal coarse-graining
parameter for nonsmooth dynamics. It should be reduced if the impulse dynamics at
small time scales is of interest.

7 Concluding remarks

The basics of the CD (contact dynamics) method for the discrete simulation of gran-
ular materials were presented, where this paper was adapted from reference [RR09].
This method can be viewed as the algorithmic formulation of nonsmooth granular
dynamics at the scale of particle rearrangements, where small elastic response times
and displacements are neglected. The CD method has the unique feature of bringing
together in the same formalism two limit regimes of granular dynamics: (i) the col-
lisional regime governed by binary shocks and incomplete energy restitution and (ii)
the static regime governed by multiple contacts, geometrical disorder, force balance
and dynamic rearrangements. Hence, this method provides a suitable framework for
the investigation of dense granular flows where smooth evolutions are intermingled
with sharp transitions.

The CD method can also be considered as an adequate framework for the numerical
treatment of frictional contact problems. Indeed, the Coulomb friction and perfectly
rigid contact condition are implemented in an exact form, i.e. without introducing ar-
tificial penalization parameters or damping. Given a contact network, all kinematic
constraints implied by contact laws are simultaneously taken into account together
with the equations of dynamics in order to determine the velocities and contact forces
in the system. This global Signorini-Coulomb problem is solved by an iterative pro-
cess pertaining to the Gauss-Seidel iterative method that consists of solving a single
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contact problem, and successively and iteratively updating the forces until a conver-
gence criterion is fulfilled. The method is thus capable of dealing properly with the
nonlocal character of the momentum transfers resulting from the impenetrability of
the particles. It can be employed to study stiff systems for which smooth MD-like
methods require small time steps for numerical stability and the stiffness matrix may
become ill-conditioned as the contact network evolves.

The CD method is unconditionally stable due to its inherent implicit time integra-
tion scheme. The uniqueness of the solution at each time step is not guaranteed for
perfectly rigid particles. However, the variability of admissible solutions is generally
below the numerical precision. The variability resulting from the numerical preci-
sion can be reduced and the calculations significantly accelerated by initializing the
iterative procedure at each step with the forces computed in the preceding step.

The basic algorithm presented in this course can be (and has been) extended to deal
with richer contact laws, various particle shapes and more efficient resolution of the
multicontact problem in 2D and 3D [BRH02, RDA04, RA05, NASR15]. The contact
laws can be supplemented with a complementarity relation between a torque and a
contact spin variable [BRH02]. Using such a complementarity relation, the rolling
friction is easily implemented in this framework. Adhesion forces can be introduced
by a simple shift of the complementarity relations:

un
S←→ fn − fan , (33)

ut
C←→ ft, (34)

where fan is the adhesion threshold. Particle deformability can also be treated in the
CD method by associating strain variables to the particles rather than to the contacts.
The strains can be defined either from rigid-body degrees of freedom, as in the MD
method, or associated with new internal degrees of freedom. Concerning particle
shapes, it is a generic feature of the CD method that, in contrast to force laws, the
nature of the contact complementarity relations does not depend on the particle shape.
Hence, the resolution of the multicontact problem is independent of particle shape.
The potential face-face or face-edge contacts are represented by three or two points
which are treated as independent point contacts by the solver [SCG+06, ASR09].
The basics of the method are the same in 2D and 3D. The only difference lies in the
treatment of the tangential force whose direction in 3D is an unknown variable of the
contact problem and is determined in the course of the iterative procedure.

Particular attention should be paid to the origin of the contact forces in the CD method.
An example is the uniaxial compression of a dense granular material by imposing a
constant velocity on a wall. In MD/DEM simulations of such or similar problems,
see Refs. [LRW17, CR17, DS17, TLM17] and refences therein, the displacement of
the wall causes mainly the elastic deformation of the particles and the contact forces
increase accordingly. In the CD simulation of the same problem, since the contact
laws involve no force scale and no static boundary or bulk forces are applied, the
force scale is fixed by the imposed velocity through the impulsive terms in Eqs. (21)
and (22). Since no rearrangements can occur due to a too high density, the corre-
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sponding kinetic energy is not dissipated. This energy increases adiabatically, the
contact forces increase proportionally to the displacement and the particles interpene-
trate. In contrast, if the uniaxial compression is controlled by an increasing boundary
force, the contact forces increase in proportion to the applied force and the contact re-
action forces balance exactly the driving force so that the packing remains in static
equilibrium. In the MD/DEM approach, for simple (complex) contact force laws
[LRW17, Mar17], the static forces are fully encoded in the particle positions (and
history) with a scale given by the contact stiffness. In the CD approach, there is no
such force/stiffness scale and thus the static force scale should be defined externally.
This example shows that the CD method should be applied with special attention to
the boundary conditions [CR17].
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[ARPS07] Emilien Azéma, Farhang Radjai, Robert Peyroux, and Gilles Saussine.
Force transmission in a packing of pentagonal particles. Phys. Rev. E,
76(1 Pt 1):011301, 2007.
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and F. Maceri, editors, Novel approaches in civil engineering, number 14
in Lecture Notes in Applied and Computational Mechanics, pages 1–46.
Springer-Verlag, 2004.

[NAD06] S. Nineb, P. Alart, and D. Dureisseix. Approche multi-échelle des
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The objective of this chapter is to describe the interfacing of the Lattice Boltzmann
Method for the simulation of fluids with the Discrete Element Method for the simula-
tion of a collection of rigid particles. For the sake of simplicity, the statistical physics
concepts underlying the method are not detailed, and the algorithms are only pre-
sented in 2D. The Boltzmann equation is discretized using a standard D2Q9 model
in which the fluid pseudo-particles can move on a lattice with 9 possible directions
of motion. The classical fluid dynamics quantities are defined as sums of local prob-
ability densities of finding particles at a specific time and position, and with a given
momentum. The Lattice Boltzmann equation is then resolved in two steps. The first
step is the so-called Streaming step that consists in computing the advection of the
fluid particles. The second step computes the relaxation of the system as a result of
possible collisions between fluid particles. Two models are presented for the colli-
sion step: the Single Relaxation Time model and the Multiple Relaxation time model.
Different boundary conditions are detailed for the implementation of no-slip condi-
tions for the fluid in contact with solid grains or walls (imposed pressure, imposed
flow, open boundary conditions and Bounce Back approaches. . . ). Finally, we detail
the momentum exchange method for the fluid-grain coupling, and we conclude with
examples of simulated systems using this approach.
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1 Introduction

Fluid-grain interactions remain poorly understood despite their very broad range of
applications in science and engineering. These interactions control the physical prop-
erties of fluid-filled granular media in many industrial processes or environmental
systems such as fluid-grain mixtures, fluidized beds, agglomeration processes, sus-
pensions, saturated soils, landslides and etc.

Different methods have been developed for the simulation of an assembly of grains
[RD11, PS05]. The Discrete Element Method (DEM) is well documented, and it has
become a popular tool for the modeling of granular materials. It has been employed
for numerous engineering and environmental applications [SCDV+11, SR05]. The
case of the coupling of a fluid with a granular phase is much less developed in the lit-
erature, and many technical issues remain unexplored. Several numerical approaches
are available to account for fluid-grain interactions:

• The Stokesian Dynamics Method was initiated by Brady and Bossis [BB88]. It
is based on a multipole expansion of hydrodynamic interactions into long-range
contributions of all the particles and the effect of lubrication between pairwise
interactions. The main issue with this type of approach is its low numerical
efficiency.

• The Pore-scale fluid network model developed by Chareyre et al. [CCCB12]
combines the DEM for the solid phase and a finite volume formulation for the
fluid phase modeled as flowing in channels connecting the pores between the
grains. This method considers an incompressible Stokes flow and assumes only
viscous forces.

• Tsuji et al. [TKT93] and McNamara et al. [McN93] proposed a DEM-CFD
coupling in which the fluid is resolved on a meso-scale grid with a mesh-size of
a few grain diameters. The fluid-granular material interaction relies on a Darcy
law evaluated at the scale of the grid. This type of approach is computationally
very efficient but fails to provide information about the fluid dynamics at the
scale of contacts.

• The continuum mechanics approaches based on the resolution of the classical
Navier-Stokes equation allows one to simulate the motion of Newtonian fluids
at a sub-particle scale. Several models were proposed to describe the fluid-
grain coupling such as the Distributed Lagrange Multiplier/Fictitious Domain
[GPHJ99] for a regular mesh [Wac11] or adaptative mesh [Mau99]. In these
methods the main variables are the density, velocity and pressure fields deter-
mined at the level of the meshing nodes.

• A popular method for grain-fluid coupling is the Lattice Boltzmann Method
(LBM) [CD98]. The advantages of the LBM among other methods are its
straightforward implementation of boundary conditions and its good scalability
in parallel computing. Another great advantage of the LBM is its ability to sim-
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ulate complex physics such as, for example, emulsions [FZB+16], liquid-gas
phase change in porous materials [WWPC07], foams [KTH+05], free surfaces
[JGK13].

In this chapter, we focus on the LBM and its coupling with the DEM. The LBM
evolved from the Lattice-Gas Cellular Automata (LGCA), a statistical model based on
the kinetic theory of gases, which simulates the fluids as pseudo-particles at discrete
points in space[Suc01]. Contrary to the other numerical methods, in LBM the fluid
variables are partial probability functions of finding virtual fluid particles moving from
site to site on a lattice. In the most classical methods, the LBM relies on a regular grid
of nodes, called lattice nodes, which interact only with their direct neighbors. In the
LBM, the “classical” fluid variables mentioned previously are upscaled by averaging
the partial distribution functions at each node.

Below, we briefly present the LBM to simulate fluid flows. Then, we consider the
coupling of the fluid phase to a particle phase modeled by the DEM. For clarity, in
this chapter we only consider the 2D case.

2 Lattice Boltzmann Method

In the LBM, the fluid is described by the time-dependent distribution function f(~r,~v, t)
of the positions ~r and velocities ~v of fluid particles. The spatio-temporal evolution of
f is governed by the Boltzmann equation:

(
∂

∂t
+ ~v · ∂

∂~r
+
~F (~r)

m
· ∂
∂~v

)
f(~r,~v, t) = Ωcoll (1)

where m is the particle mass, ~F (~r) represents the external forces, and Ωcoll is the
collision operator describing the dynamics of collisions between fluid particles.

A limited number of velocity directions are considered. While different lattice type
can be used for velocity directions, we present here more specifically the D2Q9 model
(Fig. 1), which assumes 9 directions of motion for the fluid particles i = {0, 1, . . . , 8}.
A distinct partial distribution function fi is attributed to each velocity direction ~ei:

[~e0, ~e1, . . . , ~e8] = c

[
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
(2)

where c is the so-called ‘lattice velocity’ defined by:

c = ∆x/∆t (3)

with lattice step ∆x and time step ∆t.
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Figure 1: D2Q9 model.

The density and velocity fields ρ(~r, t) and ~u(~r, t), respectively, are defined from partial
density functions and lattice directional velocities as

ρ(~r, t) =
∑
i

fi(~r, t)

ρ(~r, t)~u(~r, t) =
∑
i

~eifi(~r, t)
(4)

To simplify the equations, we set ∆x = 1, ∆t = 1. In these“lattice units”, the lattice
speed is c = 1.

2.1 Discrete Boltzmann equation

The evolution of the density distribution functions is given by the discretized Boltz-
mann equation:

fi(~r + ∆t~ei, t+ ∆t)− fi(~r, t) = Ωi (5)

This equation is computed at each node in two steps:

1. A streaming or advection step, which consists in propagating the values of the
density functions fouti (~r, t) along each direction i (Fig. 2):

fi(~r + ∆t~ei, t+ ∆t) = fouti (~r, t) (6)

2. A collision step, in which the densities fouti (~r, t) are updated from the collisions
between fluid particles coming from adjacent nodes f ini (~r, t) (Fig. 3) :

fouti (~r, t) = f ini (~r, t) + Ωi (7)
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a) b)

Figure 2: Streaming step : (a) state of the fluid node at time t. (b) At t + ∆t density
functions are propagated toward the neighboring nodes using Eq. 6.

a) b) c)

Figure 3: Collision step: (a) density functions f ini at time t. (b) Collision of nodes
with density function f ini . (c) New density functions fouti at time t+ ∆t.

2.2 Single Relaxation Time collision operator

The collision operator can be approximated in different ways. The most classical
approximation is the so-called Single Relaxation Time1:

Ωi = −1

τ
(fi(~r, t)− fieq(~r, t)), i ∈ {0, 1, . . . , 8} (8)

In this approximation, for each direction i, the collision process is considered as a lin-
ear relaxation of the density function fi(~r, t) toward an equilibrium function fieq(~r, t)
in a time τ . These equilibrium functions can be obtained using a Taylor expansion of
Maxwell’s equilibrium function:

feqi = wiρ(1 + 3~ei · ~u+
9

2
(~ei · ~u)2 − 3

2
~u · ~u) (9)

1SRT is frequently called BGK operator following the work by Bhatnagar, Gross and Krook [BGK54]
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where the coefficients wi are weight coefficients depending on the meshing model.
For the D2Q9 model, we have





wi = 4/9, for ||~ei|| = 0

wi = 1/9, for ||~ei|| = 1

wi = 1/36, for ||~ei|| =
√

2

i ∈ {0, 1, . . . , 8} (10)

The relaxation time is directly related to the kinematic viscosity ν of the fluid:

ν =
2τ − 1

6
(11)

It is worth noting that the Navier Stokes equations can be recover directly from the
Boltzmann equation and SRT [BGL91]. For perfectly quasi-incompressible fluids at
low Mach number, we have

P = cs
2ρ (12)

where cs2 = 1
3c is the velocity of sound in the fluid.

2.3 Multi-Relaxation-Time operator

In the SRT approach, all physical variables, and thus all moments of the distribution
function, are relaxed with a single characteristic time τ . On the contrary, in the Multi-
Relaxation-Time (MRT) approach all moments of the distribution can be relaxed with
a specific independent characteristic time [D’H94, LL00, Del03, Del06]. In this ap-
proach, at each node of the domain one computes 9 moments mi attributed to the 9
partial distribution functions fi:

m = MF (13)

with m = (m0 m1 m2 m3 m4 m5 m6 m7 m8 )
T

&F = (f0 f1 f2 f3 f4 f5 f6 f7 f8)
T .

The matrix M is of order 9. It is inversible and each line is orthogonal to other lines:

M =




1 1 1 1 1 1 1 1 1
−4 −1 2 −1 2 −1 2 −1 2
4 −2 1 −2 1 −2 1 −2 1
0 1 1 0 −1 −1 −1 0 1
0 −2 1 0 −1 2 −1 0 1
0 0 1 1 1 0 −1 −1 −1
0 0 1 −2 1 0 −1 2 −1
0 1 0 −1 0 1 0 −1 0
0 0 1 0 −1 0 1 0 −1




(14)

The details of the full determination of this matrix for D2Q9 can be found in [DGK+02].

The collision step is applied in the moment space, each moment mi being relaxed to
its equilibrium statemeq

i with a relaxation time si. The moment vector mout resulting
from collision can be written as follows:

mout = m− S(m−meq) (15)
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where S = diag (0, s2, s3, 0, s5, 0, s7, s8, s9) is a diagonal 9×9 matrix. All relaxation
times are proportional to τ−1 [MAL09]. The equilibrium moment vector meq is given
by:

meq =




ρ
−2ρ+ 3

(
j2
x + j2

y

)
/ρ

ρ− 3
(
j2
x + j2

y

)
/ρ

jx
−jx
jy
−jy(

j2
x − j2

y

)
/ρ

jxjy/ρ




(16)

The distribution functions fouti (~r, t) resulting from the collision step are given by
fout = M−1mout and the streaming step is applied in the velocity space. The values
of the relaxation times si can be determined from a stability analysis [NSCP06, LL00,
MAL09]. Note that the moments corresponding to the density ρ(~r, t) and the the
momenta (jx, jy) = (ρ~ux, ρ~uy) are conserved so that the corresponding relaxation
times are equals to 0 (i.e. s1 = 0, s4 = 0 et s6 = 0).

For the simulations reported below we use the values suggested by Mussa et al.
[MAL09]:

s2 = 1.63, s5 = s7 = 1.92, s8 = s9 = 1/τ (17)

We note that the SRT approach can be recovered by setting all relaxation times to 1/τ
in the MRT approach.

2.4 Algorithm

To simulate the flow of a newtonian fluid using the LBM, we first need to initiate
fi(~r, t) at t = 0 using the average density ρ0 and the initial velocities ~u0. This can be
done thanks to the equilibrium function (Eq. 9):

fi(~r, t = 0) = feqi (ρ0, ~u0) (18)

A standard LBM algorithm consists in iterating over the steps:

• Computation of the collisions (Eq. 7).

• Streaming of fluid particles (Eq. 6).

• Computation of the missing fi at the boundaries (Eq. 19).

• Update of the densities ρ(~r, t) and velocities ~u(~r, t) using Eq. (4).

The following conditions must be satisfied to ensure the stability of the algorithm
[SC96]:

Delenne, Amarsid, Mutabaruka, Richefeu, Radjai 67

ALERT Doctoral School 2017



a)

interface

solid

fluid

b)

? ? ?

Figure 4: (a) Density functions of a fluid node in contact with a solid wall. (b) The
missing fi values after streaming step.

1. For each node of the fluid domain, ‖~u(~r, t)‖ must be lower than the sound ve-
locity on the lattice cs = 1√

3
∆x
∆t . This condition corresponds to a Mach number

Ma = max ‖~u(~r,t)‖
cs

< 1 and ρ satisfies ρ = ρ0 +O(Ma2) [Del03].

2. The relaxation time τ is related to the viscosity ν through Eq. (11). As the
viscosity is a positive quantity, the condition τ > 1/2 must be satisfied. This
condition may be difficult to fulfill with SRT as this collision operator gener-
ates numerical instabilities at values of the viscosity. For this reason, the MRT
approach should be preferred [MA05, CZ11].

3 Boundary conditions

One of the main advantages of the LBM is that complex boundary conditions can eas-
ily be implemented. To illustrate the way the boundary conditions are implemented,
let us consider a fluid domain with a wall at the lower boundary (Fig. 4b). This figure
shows that after the streaming step the values of fi at the fluid nodes in contact with
the wall are unknown. In the following we detail how such values can be determined
for different boundary conditions.

3.1 Periodic boundaries

The periodic boundaries are simple to program. They are frequently employed to limit
the size of the fluid domain, and they are particularly interesting for the investigation
of large cumulative shearing in fluid or suspensions. To set a periodicity of the domain
along the x axis, we use cylindrical topology as illustrated in Fig. 5. For this specific
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case, the fluid nodes on both side of the periodic domain become adjacent. Hence, the
streaming step can be computed without additional operation and the fiin leaving the
domain from the position xin are advected to the nodes located at xout. In the same
way, the fiout leave the nodes xout and are advected towards the nodes xin.

In
Ou

t

xinxout
xin

xout

Figure 5: Analogy between periodic domain and a cylindrical domain. The fluid nodes
at xin and xout becomes adjacent.

3.2 Bounce-Back condition

In the LBM, the Bounce-Back (BB) technique is widely used to implement the no-slip
condition at the boundary of a solid obstacle. In 2D, the BB condition (Fig. 6) consists
in setting all unknown values of fi to those of the opposite values fiopp.

f ini (~r, t+ ∆t~ei) = foutiopp(~r, t) (19)

where f ini and foutiopp are, respectively, the ‘in’ and ‘out’ distribution functions and
iopp stands for the direction opposite to i. The precision of this boundary condition is
of first order [CdL91] and may be improved by placing the interface at mid-distance
between the wall and the fluid node [Zie93, CMM96, GNGB97, KKH+99].

3.3 Bounce-Forward condition

The Bounce-Forward condition (BF) is used allow the slipping of the fluid in contact
with a wall. Fig. 7 shows an example of BF which consists in a specular reflection of
the fi at the level of the wall.
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Figure 6: Missing fi in the Bounce-Back technique, (a) before streaming, (b) stream-
ing, (c) bounce back, (d) after streaming.

.

Note that it is also possible to associate BB and BF in order to control the slipping
condition between fluid and solid surfaces[AH09, Suc01, Suc02, ZTPM05, VDR07] :

f ini (~r, t+ ∆t~ei) = Scfi
BF + (1− Sc)fiBB (20)

where fiBB and fiBF are respectively the density functions obtained from the BB
and the BF, Sc ∈ [0, 1] controls the slipping magnitude. Fig. 8 shows the effect of the
latter for a pipe flow [Suc02].

3.4 Dirichlet Pressure Boundary condition

A Pressure Boundary (PB) condition can be implemented [ZH97] at a boundary of
a fluid domain by using equation (12), which links the pressure to the fluid density.
Applying a pressure P can thus be done by controlling ρ.

Fig. 9 shows a PB condition in which a pressure P is applied. By assuming zero
velocity along the y axis (uy = 0), four unknown variables have to be determined (f1,
f5, f8 and the velocity ux along x) using four equations:

ρ = f1 + f2 + · · ·+ f8 (21)

which is the expression of ρ (Eq. (4)).

ρux = f1 + f5 + f8 − (f3 + f6 + f7) (22)
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Figure 7: Bounce-Forward, before (a) and after (b) streaming step.

Sc = 0 Sc = 1

Figure 8: Velocity profile in a pipe showing the velocity u as a function of the height
z for Sc = 0, 10−5, 10−4, 10−3, 10−2, 1. The curve Sc = 0 corresponds to a classical
Poiseuille profile [Suc02].

.
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Figure 9: Pressure Boundary condition. The directions in red correspond to the fi
values which should be determined.

and
ρuy = 0 = f2 + f5 + f6 − (f4 + f7 + f8) (23)

which are the projections of ρ~u (Eq. 4) on x and y axes. The last equation is called
the Zou and He [ZH97] assumption. It consists in applying a bounce-back for the
non-equilibrated part of both fi whose velocity directions ~ei are perpendicular to the
boundary surface:

f1 − f1
eq = f3 − f3

eq (24)

where f1
eq and f3

eq are given by Eq. (9). The solution of the above system of equa-
tions is

ux = −1 + (f0 + f2 + f4 + 2(f3 + f7 + f6))/ρ
f1 = f3 + 2

3ρux
f5 = f7 − 1

2 (f2 − f4) + 1
6ρux

f8 = f6 + 1
2 (f2 − f4) + 1

6ρux

(25)

3.5 Neumann Flux Boundary condition

Flux Boundary Condition (FB) is used to impose a flow rate by setting the velocity
~u = (ux, 0) at a boundary. The unknown variables are then f1, f5, f8 and the fluid
density ρ. Using the above equations we get the same expressions (Eq. 25) for f1, f5

and f8 with
ρ = (f0 + f2 + f4 + 2(f3 + f7 + f6))/(1− ux) (26)
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3.6 Open Boundary condition

An Open Boundary Condition (OB) condition is used when it is necessary to absorb
pressure waves at the boundaries of the fluid domain. Several authors have worked on
the OBC [LGS13, JY08, JY11, IMLF09, OS00] and some methods may be difficult
to implement. In this chapter, we only discuss the Extrapolation Boundary Condition
(EBC) [JY11] which is a simple linear approach. The unknown density functions fi
at the boundary of the domain are determined using the two first neighboring nodes
(Fig. 10). The fi(xn, t), which are unknown at the position xn, are computed using:

fi(xn, t) = 2fi(xn−1, t)− fi(xn−2, t) (27)

O
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d
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xNxN�1xN�2

Figure 10: Schematic view of free boundary conditions.

Fig. 11 shows an example in which a pressure wave propagates in a square domain.
The wave is obtained by imposing at initial time an overpressure on the circular zone
in the middle of the sample. Two simulations were performed with 1) zero pressure
using the Pressure Boundary conditions and 2) Open Boundary conditions.

Fig. 12 shows the results for different running times. For the OB conditions the den-
sity wave expands out of the domain with very little perturbation at the level of the
boundaries. On the contrary, with the PB conditions the wave is partially reflected at
the boundary surface. Fig. 13 compares the waves along the x axis before and after
reflection for both OB and PB conditions.
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Figure 11: Simulation of the propagation of a density wave in a square domain.

t = 0 t = 0.9st = 0.75s t = 1.1s

Figure 12: Comparison of the wave propagation with PB condition (above) and OB
condition (below).

4 LBM–DEM coupling

In this section, we discuss the coupling between the Discrete Element Method (DEM)
and the Lattice Boltzmann Method. We first recall the basics of the classical DEM
[CS79]. The fluid-grain interaction is then described in detail and finally some bench-
mark tests are presented.
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Figure 13: Pressure wave along the x axis. The red curve shows the pressure wave
before touching the boundary whereas the two other curves show the reflected waves.

4.1 Discrete Element Method

The DEM is based on the assumption of rigid grains interacting through frictional
contacts. Newton’s equations of motion are integrated for all rigid-body degrees of
freedom with simple force laws expressing the normal and friction forces as explicit
functions of the elastic deflexion defined from the relative positions and displacements
of the grains at their contact points:

mi
d2~ri
dt2

= ~Fi, i = 1 . . . N (28)

where N is the total number of grains and mi and ~ri are respectively the mass and the
position of the grain i. The resultant force ~Fi applied on i can be decomposed as

~Fi =
∑

j 6=i

~Fcij + ~Fgi + ~Fhi (29)

Delenne, Amarsid, Mutabaruka, Richefeu, Radjai 75

ALERT Doctoral School 2017



where
∑
j 6=i

~Fcij represents the contact forces, ~Fgi is the gravity force and ~Fhi is the

hydrodynamics force which results from the action of the fluid at the surface of the
grain.

Let us consider a local reference frame (~nij ,~tij) at the contact between two grains,
~Fij can be projected on these axis (Fig. 14):

~Fij = FN~nij + FT~tij (30)

where FN and FT are the normal and tangential components of the contact force.

Ci

di

Cj

dj

δij

contact point

F
FNFT

Figure 14: Contact between two grains.

Although more accurate models exist in the literature, we consider here a simple vis-
coelastic law for the contact force (Fig. 15a):

~FN =

{
(−knδij − γnvn)~nij if δij < 0

~0 else
(31)

where kn is normal contact stiffness, γn is a damping coefficient, δij (Fig. 14) is the
normal distance between particles (or overlap when there is a contact between grains).
For disks, we have δij = ‖~ri − ~rj‖ − (Ri − Rj). FT can be calculated using a
regularized Coulomb’s friction law (Fig. 15b) that depends on the tangential relative
velocity ~vt:

~FT = −min {γt ‖~vt‖ ;µfFN}~tij (32)

The equations of motion are integrated according to a velocity Verlet scheme :

1. ~vi(t+ 1
2∆t) = ~vi(t) + 1

2~ai(t)∆t

2. ~ri(t+ ∆t) = ~ri(t) + ~vi(t+ 1
2∆t)∆t
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Figure 15: (a) Linear contact law; (b) Regularized friction law.

3. ~ai(t+ ∆t) = 1
mi

~Fi

4. ~vi(t+ ∆t) = ~vi(t+ 1
2∆t) + 1

2~ai(t+ ∆t)∆t

The conditions of stability of this mass-spring system have been studied in detail in
[RD11]. Without entering the details, the numerical stability of the above scheme is
ensured for a time step below collision duration, which may be estimated for linear
elastic interactions to be tc =

√
m/kn, where k = max{kn, kt}. In order to damp

the elastic oscillations, the viscosity parameters can be increased but should remain
below γn = 2

√
mkn. More information about Discrete Element modeling (DEM)

can be found in [LRW17, TWT17].

To compute the fluid-grain interactions, the grains need first to be meshed on the same
lattice grid as the fluid. The nodes which belong to the grains are the ‘solid nodes’.
The coupling of LBM and DEM is thus ensured by calculating the interactions at the
interface between the fluid and the solid nodes (Fig. 16). The latter are considered as
moving boundaries over which the no-slip condition is imposed [BFL01]. On the other
hand, the hydrodynamic forces acting on particles are calculated by the momentum
exchange method proposed in [Lad94].

4.2 Effect of the grain on the fluid

For the fluid, the solid nodes at the fluid-grain interface are mobile boundaries where
a Bounce-Back technique can be applied to determine the missing values of the par-
tial distribution functions during the streaming step. In order to take accurately into
account the positions of these moving boundaries, an interpolation method developed
by Bouzidi et Lallemand [BFL01, LL03], can be used.

Let us consider a simple one-dimensional case in which the velocity of the wall is
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fluid

solid

Figure 16: A grain immersed in the lattice fluid domain.

assumed to be zero. The location of the wall can be given by q = |xf − xb|/∆x.
where xf and xs are the positions of the closest fluid and solid nodes to the interface
and xb is the position of the ”real” solid interface of the grain. A particle leaving xf
and reflected on the wall will not reach a fluid node after moving over a total distance
of ∆x except if q is equal to 0, 1/2, or 1; see Fig. 17. The algorithm thus depends on
q:

• For q = 1/2, a fluid particle leaving the position xf bounces back on the wall
and comes back to its initial position xf (Fig. 17a). The classical Bounce-Back
condition can be used without modification and fi(xf , t+ ∆t) = foutiopp(xf , t).

• for q > 1/2 the fluid particle leaves the position xf and bounces on the wall to
a position which is between xf and xb (Fig. 17b). The partial density function

can be determined using linear interpolation: fi(xf , t+∆t) =
1

2q
foutiopp(xf , t)+

(2q − 1)

2q
fouti (xf , t)

• for q < 1/2, the particle leaves xf and bounces to a position between xf and
xf ′ (Fig. 17c). In this last case, a linear interpolation yields fi(xf , t + ∆t) =

2qfoutiopp(xf , t) + (1− 2q)foutiopp(xf ′ , t).

In the case of moving boundaries, we need to take into account the motion of the grains
in the calculation of the partial density functions fi(xf , t+ ∆t) [BFL01]. Thus,

• for q > 1/2

fi(xf , t+ ∆t) =
1

2q
foutiopp(xf , t) +

(2q − 1)

2q
fouti (xf , t) + ∂fi (33)

• for q < 1/2

fi(xf , t+ ∆t) = 2qfoutiopp(xf , t) + (1− 2q)foutiopp(xf ′ , t) + ∂fi (34)
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Figure 17: Details of the collision process on a rigid wall.

where ∂fi is used to impose a velocity of the fluid equal to the velocity ~V0 of the wall,
which corresponds to vanishing relative velocity. Thus,

• q > 1/2

∂fi =
3

q
wi~V0.~ei (35)

• q < 1/2

∂fi = 6wi~V0.~ei (36)

where the wi are the density weights defined previously (Eq. (10)) and the ~ei are the
velocities (Eq. (2)).

4.3 Effect of the fluid on the grain

The effect of the fluid on the grain is taken into account through the resulting hy-
drodynamic force ~F . This force is then directly applied to the center of mass of the
grain. In order to compute the hydrodynamic force, we use a method proposed by
Ladd [Lad94], which relies on the momentum transfer through the fluid-grain inter-
face. During the streaming step, the partial distribution function fi(xf , t) at a posi-
tion xf at a fluid node attached to the interface rebounds on the wall and becomes
fiopp(xf , t+ ∆t). The resulting hydrodynamic force ∂ ~F is thus given by

∂ ~F = (fiopp(xf , t+ ∆t) + fi(xf , t))~ei (37)
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As the distribution function fi(xf , t) is propagated to the position xs, we get fi(xs, t+
∆t) = fi(xf , t). The resultant force can be obtained by adding all ∂ ~F values for each
solid node xs of the interface which have at least one neighbor fluid node.

5 Conclusions

In this chapter, a short and functional presentation of the Lattice Element Method
(LBM) for the simulation of fluids was given in 2D. We also described the basics of
a coupled DEM-LBM approach for the simulation of fluid-grain mixtures. A major
advantage of this approach is that it provides a detailed description of fluid dynamics
at the scale of the particles. Furthermore, it has a very good scalability for parallel
computing. Another important advantage of the DEM-LBM approach is that complex
boundary conditions can easily be implemented. It is also important to mention here
that the LBM can be used for the simulation of multi-fluid systems such as liquid-
vapor systems and their interface by introducing temperature- and pressure- dependent
densities.

As a conclusion of this chapter, we show in Fig. 18 recent examples in the case of
dense suspensions of granular materials and in Fig. 19 advanced LBM simulations of
grain-liquid-gas systems.
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Régimes de fluidisation

Avec l’échantillon granulaire spl10, nous avons pu observer les régimes de fluidisation
suivants :

Figure 8 – Lit statique pour u < us

Figure 9 – Cavité fluidisée pour us < u < uf

Figure 10 – Cheminé fluidisée pour uf < u

21

a) b)

c)

d)

Figure 18: a) A periodic granular sample immersed in water is sheared (left). Increase
in volume for a highly viscous fluid (right) [ADM+17]. b) Example of a 3D biperi-
odic column of grains spreading under its own weight. The colors show the negative
pressure during a creeping phase before the onset of the avalanche [MDSR14]. c)
Example of deposit due to the underwater spreading of an immersed granular column.
d) Simulation of the internal erosion of a sand bed by localized resurgence of water
[NPB+15].

Delenne, Amarsid, Mutabaruka, Richefeu, Radjai 81

ALERT Doctoral School 2017



a)

b)

Figure 19: a) Simulation of surface waves generated by the collapse of a rock mass
inside water [ADD+12]. Simulation of the capillary wetting of a granular material.
The arrows represent the forces applied by the liquid phase on the grains [DRR15].
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Advanced contact laws

C.L. Martin

Univ. Grenoble Alpes, CNRS, SIMaP, F-38000 Grenoble, France

This chapter will briefly introduce the basics of contact laws that can be used in Dis-
crete Element Method simulations. The focus will be on contact laws that have been
derived analytically from the constitutive equations of the material that constitutes the
two particles in contact. This generally restricts the validity of these laws to spherical
particles but allows the interested user to obtain directly the material parameters. We
treat elasticity, adhesion, plasticity, viscoplasticity, solid bonds and sintering.

1 Introduction

Discrete Element Method (DEM) simulations need contact laws as these represent
the first ingredient of a physically-based model. Contact laws define the interaction
between particles. Forces are generated when particles form a contact and these forces
need to be defined carefully since the physics of the problem to be modeled is very
often embedded in these forces. In other words, the local interactions are responsible
for the behaviour of the particulate material at the macroscopic scale. The contact
law is usually decomposed into a normal and a tangential component. It is generally
formulated as a contact force-displacement law that relates the contact force acting
between the two particles to their relative displacement and/or to their relative velocity.

In this chapter, we will focus on contact forces that go beyond linear models, which
are the most intuitive and simple models. The most common linear model is the linear
spring–dashpot model proposed by Cundall and Strack [CS79], where the spring is
used for the elastic deformation while the dash-pot accounts for the viscous dissipation
[LRW17]. However, we will not be able to give a full review of existing contact laws
since the rapid development of DEM in the last decades has been accompanied by
a very large number of papers proposing new contact laws. Also, it is worth noting
that many papers on contact forces were not primarily intended for DEM users, but
still offer very valuable analytical developments that can be of interest to the DEM
community. Here we will give only a compact description of contact laws specialized
for spherical particles. For a more complete review of available contact laws, we

Martin 89

ALERT Doctoral School 2017



refer to Refs. [Mis03, PC04, KESR+07, ZZYY08, Lud08, RD11, SML15, WSB+15].
Here, we will restrict ourselves to a description of models that do not need a calibration
of material parameters. The models discussed here only need parameters that are
generally available from the literature. These are typically the elastic constants, the
yield stress, and the surface energy. Note also that we will only describe normal
interactions and let the interested reader go through the literature for contact laws that
define tangential interactions (typically friction).

In this paper, we will show that a simple dimensional analysis on contact laws al-
lows for some insights on particle size effect. In other words, the contact laws de-
scribed hereafter may (or may not) bring particle size effect at the macroscopic scale.
This simple analysis is based on the Love’s equation that gives the macroscopic stress
tensor σxy of a packing of discrete particle as a function of its volume V [Dan68,
CMNN81]:

σxy =
1

V

∑

contacts

F,xl,y (1)

where the summation is carried out on all contacts, F,x is the x component of the
contact, and l,y is the y component of the branch vector between the two particles.
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Figure 1: a) Contact geometry and b) contact kinematics

2 Contact geometry and kinematics

We briefly introduce the main contact geometry and kinematics parameters that will
be handy in the following sections. Considering two particles of radii Ri and Rj
(Fig. 1a), we define the equivalent radius R∗ as:

R∗ =
RiRj
Ri +Rj

(2)

The overlap or indentation between the two particles is δ and the two particles form
a circular contact with radius a. The unit vectors n and t, normal and tangent to the

90 Advanced contact laws

ALERT Doctoral School 2017



contact are defined from the relative velocities of the particles at the contact (Fig. 1b):

n =
rj − ri
| rj − ri |

; t =
vc,rel − (vc,rel · n) · n
| vc,rel − (vc,rel · n) · n | (3)

where vc,rel is calculated from the particle translational (vi,vj) and angular (wi,wj)
velocities.

3 Contact laws

3.1 Elasticity

The normal Hertzian force between two elastic spheres with Young’s moduli Ei, Ej
and Poisson’s ratios νi, νj is:

Fn =
4E∗a3

3R∗
=

4

3
E∗
(
δ

R∗

) 3
2

R∗2 (4)

where E∗ is given by:
1

E∗
=

1− ν2
i

Ei
+

1− ν2
j

Ej
(5)

The contact radius a is simply given for elasticity by:

a2 = R∗δ (6)

When adhesion between particles needs to be taken into account, two classical models
are available. The DMT (Derjaguin, Muller and Toporov) theory [DMT75] is appro-
priate for “hard” and “small” particles, while the JKR (Johnson, Kendall, Roberts)
model [JKR71] is more appropriate for “soft” and “large” particles [Bar08]. An ad-
ditional tensile term, accounting for the work of adhesion w = 2γs (γs is the surface
energy) is added to Eq. (4). The DMT model force is:

Fn =
4E∗a3

3R∗
− 2πwR∗, (7)

while the JKR model force is:

Fn =
4E∗a3

3R∗
− 2
√

2πwE∗a3. (8)

In both models, the contact radius is still given by Eq. (6). The critical pull-out force
at which the two surfaces separate is simply derived from

( dFn

da

)
c

= 0.

When adhesive effects are neglected (w → 0), no macroscopic size effect emerges
from Eq. (1). However, when adhesive forces play a role Eqs. (7) or (8) lead to a
size effect: the macroscopic strength of a packing of adhesive spheres is inversely
proportional to their size.
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3.2 Plasticity and viscoplasticity

When particles are pressed, they might undergo plastic deformation. We will not
detail the features of plastic indentation, for which ample literature is available. Here,
we only describe the model of Storåkers [SFM99], which is quite handy for a simple
implementation in DEM. For two spherical particles made from viscoplastic materials
with a uniaxial stress response given by:

σ = σiε
M ε̇N (9)

where σ is the uniaxial stress, and ε and ε̇ are the uniaxial strain and strain-rate, and
σi, M and N are material constants for particle i. The normal force between the two
particles is:

Fn = ηδ(1+M/2−N/2)δ̇N (10)

where δ̇ is the normal rate of approach of the two particles. Fn opposes the relative
motion of the two particles in tension and compression. η is defined as [SFM99]:

η = 21−M
2 − 3N

2 31−M−N (1 + 2N)πc2+M+Nσ0 (R∗)1−M
2 −N

2 (11)

where σ
− 1

M+N

0 = σ
− 1

M+N

1 +σ
− 1

M+N

2 = 2σ
− 1

M+N

1 in the case of two particles made of
the same material (σ2 = σ1). The exact expression of c2 is given by plastic indentation
theory [SFM99]. The interest of Eq. (10) is that, as for elasticity, the knowledge of the
particle material constitutive behavior leads directly to the writing of the contact law.
Note that the model imposes thatM andN are identical for particles i and j (although
particles i and j may be defined by different values of σi in Eq. (9)).

Lets simplify the general constitutive equation in Eq. (9) to a simple perfectly plastic
material with yield stress σi = σ (M → 0, N → 0) and to two particles made of the
same material. In that case, Eq. (10) simplifies to:

Fn = 3πσa2 (12)

which is the classic indentation force, with the contact radius given by:

a2 = 3R∗δ (13)

Note that in elasticity, the normal force scales with δ
3
2 (Eq. (4)) while it scales linearly

with δ for perfect plasticity (Eqs. (12) and (13)). Also, note how the contact size for
a given indentation δ, is different in elasticity (Eq. (6)) and in plasticity (Eq. (13)),
reflecting plastic flow around the contact.

Often when plasticity is at work, unloading of contacts is of interest. Again, the
literature gives tools to resolve analytically the problem of two spheres, whose contact
has undergone plasticity and that unload up to full separation with or without adhesion
effects [MJ00].

When adhesion plays a role, the unloading (and subsequent failure) of a packing of
previously plastified particles leads to an inverse relation between the macroscopic
stress and the size of the particles.
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3.3 Sintering

a

Figure 2: The sintered contact between two metallic particles.

When metallic, ceramic or polymeric particles (typical powders for engineering ap-
plications) are submitted to high enough temperatures (above half the melting tem-
perature), they may sinter. Sintering of particles induces the growing of interparticle
necks by solid diffusion mechanisms, the driving force being the reduction of the free
surface energy of the system (Fig. 2). It usually results in overall shrinkage of the
powder compact. Solid diffusion mechanisms are thermally activated processes and
thus viscous effects are expected. Different models for two sintering spheres exist in
the literature. We focus on one of the simplest [BM96, PLKY98, MB09], which leads
to the following contact law:

Fn =
πa4

8∆b
δ̇ − 9

4
πR∗γs (14)

that considers grain boundary and surface diffusion to be the major mechanisms of
mass transport. γs is the surface energy and

∆b =
Ω

kT
δbDb (15)

with Db = D0b exp(−Qb/RT ) the diffusion coefficient for vacancy transport in the
grain boundary with thickness δb and activation energy Qb, Ω is the atomic volume.
The first term on the rhs of equation (14) may be considered as a normal viscosity,
which scales with a4, whereas the second term relates to a tensile force due to surface
energy. The sintering contact radius a (Fig. 2) is related to the indentation δ by:

a2 = 4R∗δ (16)

The nature of Eq. (14) leads to size effects that are commonly observed by practition-
ers: small particles sinter faster than large ones. More precisely, the time necessary
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to attain a given density for a packing of particles of radius R is proportional to R4

∆γs
.

In other words, the kinetics of sintering is favored by small particles (that should not
coalesce too much) and large diffusion coefficients (or high temperature).

3.4 Solid bonds

When two particles form a solid bond through some physical mechanism (sintering,
cementation, calcination, precipitation, ...), the tensile or compressive forces arising
from their relative displacement can be derived analytically from the bond geometry
[JHM02, ODVE13]. In that case, elasticity and eventually fracture, need to be mod-
eled starting from the geometry of a bonded contact of bond radius a as shown in
Fig. 3. For two such particles which have accumulated a normal displacement un the
normal contact force is given by:

Fn = E∗φnaun (17)

where φn is a function that describes the interaction between neighboring bonds:

φn =
1 + a∗[π6 (1− ν2)(1 + 2a∗)− a∗]√

1− a∗2 − ψ̄(a∗ + a∗2[π6 (1− ν2)(1 + 2a∗)− a∗])
(18)

where a∗ = a/2R∗ is the bond normalized radius, and ψ̄ is a material independent
factor that allows bond interaction to be taken into account in a simplified man-
ner [JHM02]. When bond size increases to such an extent that the constitutive law
(Eq. (17)) is not any more valid due to the influence of neighboring bonds, it is possi-
ble to use the principle of superposition of linear elastic fields to propose an alternative
formulation [JMLB12]. In that case, the expression of the accumulated normal dis-
placement un is replaced in Eq. (17) by:

u′n = un −
∑

contacts

uin (θi, Fn) (19)

where the term
∑
a u

i
n (θi, Fn) is a correction accounting for bond interactions that

depends on the angles θi that neighboring bonds make with the considered bond
(Fig. 3). The analytical expression of uin (θi, Fn) is deduced from FEM analysis
of a truncated sphere under body loading [JHM02, JMLB12].

The term
∑
contacts u

i
n (θi, Fn) is generally small compared to un but is still neces-

sary to fully reproduce Poisson’s effect of a bonded packing. Similarly a tangential
force complements the model, together with resisting normal and tangential moments
[PC04].

Note that in Eq. (17), the bond radius a is considered constant (it does not depend on
the accumulated relative displacement un). Eq. (17) shows that the force is propor-
tional to the bond radius. The bond radius, depending on the bond formation mech-
anism may be given by Eq. (16) or simply by the geometric intersection of the two
spheres:

a2 = 2R∗δ (20)
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When particles are bonded together, it is generally interesting to equip the model with
a fracture criterion which is physically based. Considering the elastic stress intensity
factor associated with the singular stress field along the edge of the bond, it writes
[FJMZ04, FC01]:

σc =

√
E∗

Γ

πa
(21)

where Γ is the bond toughness. Γ is generally approximated by the surface energy
contribution of the two particles i and j that make the bond (Γ = 2γs). This is a
reasonable assumption if energy dissipating processes are very limited in the small
process zone of the bond (typically correct for elastic brittle materials like ceramic).
Note the similarity with the elastic case, which simplifies also the fracture energy to
the work necessary to separate the contact surfaces (section 3.1).

Importantly, Eq. (21) introduces a length dependence as it relates the bond fracture
stress to the inverse of the bond size square root. Consequently, the macroscopic
stress necessary to fracture an aggregate of bonded particles for a given a∗ = a

2R∗

value is inversely proportional to the square root of their size (Eq. (1)).

Ri

j

Fn,1

Fn,2

Figure 3: Four bonded particles. Particles 1 and 2 make angles θi and θj with particle
j. The contact law between particles i and j is modified by the bonds with particles 1
and 2.
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4 Concluding remarks

The contact laws briefly described above encompass a large panel of deformation
mechanisms at the contact length scale, elasticity, plasticity, high temperature sinter-
ing, and solid bonds. An interesting signature of the contact deformation mechanism is
the contact size. For a given indentation δ, and simplifying the problem to the contact
of two identical particles (Ri = Rj), inspection of Table 1 indicates that the elastic
contact is actually smaller than the contact defined by the simple intersection of the
two spherical particles. When material flows (plasticity or sintering), Table 1 shows
that the deformation mechanism dictates the manner in which volume conservation
operates at the contact length scale (except for elasticity which does not imply volume
conservation). The contact size has significant implications at the macroscopic scale,
beyond the mere mechanical response of the packing. Conduction, gas diffusion, liq-
uid interaction are important phenomena which all depend on the contact geometry.

Table 1: Contact radius a for various deformation mechanisms (Eqs. (6), (13), (16),
(20))

elasticity geometric contact perfect plasticity sintering

√
1
2Rδ ∼

√
Rδ

√
3
2Rδ

√
2Rδ

a a

δ

a aa a

δ

a aa a

δ

a aa a

δ

a a

In this very brief overview of physically-based contact laws, we have omitted im-
portant interaction laws that are available in the literature, usually from analytical
derivations on a pair of spherical particles. When capillarity is at play in unsaturated
granular materials, the capillary force can be computed (although not in a fully ana-
lytical manner) [SCND09]. Electrostatic forces between charged particles can also be
modeled [THJ06]. More generally, it should be reminded that thanks to the analytical
derivations of many researchers, it is generally possible to implement in a DEM code a
physically-based contact law, for which material parameters can be extracted directly
from the material properties of the particles.
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Good practice for sample preparation –
Construction of granular packings

G. Combe1 and J.-N. Roux2

1Univ. Grenoble Alpes, Grenoble INP∗, CNRS, 3SR, F-38000
Grenoble, France
2Laboratoire Navier, Univ. Paris-Est, 2 Allée Kepler, Cité Descartes,
77420 Champs-sur-Marne

This paper introduces several numerical recipes to build equilibrated granular assem-
blies under static loadings with Discrete Element Methods (DEM). Each preparation
technique has to be characterised in terms of internal variables apt to capture its spe-
cific influence on the equilibrium configuration obtained. The possible comparisons
with laboratory assembling procedures for static granular samples under prescribed
stresses will be evoked. All the assembling procedures proposed rely on mechanical
models, and involve some implementation of a type of DEM enabling static equilib-
rium states with enduring intergranular contacts to be modelled, such as “molecular
dynamics” like approaches (MD, see the paper of S. Luding et al. [LRW]) or “contact
dynamics” (CD, F. Radjaı̈ [Rad]).
This article draws heavily from the chapter 6 of the book entitled “Discrete-element
Modeling of Granular Materials”, edited by F. Radjaı̈ and F. Dubois [RD11].

1 Introduction

1.1 Motivation

Both in experiments and in simulations one needs a sample of the material in order to
study its mechanical properties, or sometimes a specific configuration (a “structure”,
i.e., a granular specimen with a special shape and particular boundary conditions that
one wishes to characterise under specific loadings). Laboratory assembling methods
(such as air pluviation, layerwise deposition and dry or moist tamping...) are experi-
mental recipes, sometimes described in official standards (e.g., the ASTM recommen-
∗Institute of Engineering Univ. Grenoble Alpes
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dation for “Soil Specimen Preparation for Laboratory Testing” [SM76]). The DEM
practicioner is confronted with a very similar situation, with individual grains that
need to be assembled. In addition, some delicate choices have to be made regarding
geometric and micromechanical ingredients of the model. In view of the well-known
influence of the initial state on the mechanical behaviour in quasi-static conditions, it
is essential to have a good control of the first step of a discrete simulation study, which
is the assembling stage.

1.2 Internal parameters for sample homogeneity checking

Objectives may differ for the study of intrinsic material properties and for specific
configurations and structures. In the sequel, we shall focus on the first case, and
discuss the ability of the assembling methods to form well controlled homogeneous
representative samples. To check for the quality of a numerical equilibrated specimen,
a number of internal variables are measured, which usually comprise the following list.

• Density, or solid fraction Φ, i.e., the proportion of the sample volume occupied
by the solid grains;

• Coordination number z, i.e., the average number of force-carrying contacts per
grain, or, more generally, the connectivity, which is the distribution of local
coordination number values (xi)i=0,1,2..., or in other words the proportion of
grains with i force-carrying contacts (in the absence of distributed forces such
as gravity, a fraction x0 of the grains are “rattlers” and carry no force at all);

• the stress tensor (static contribution only);

• the distribution of contact orientations (i.e., orientations of normal directions of
contacts), characterised by fabric tensors;

• except for disks or spheres, the distribution of the orientations of the grains
themselves.

Those state variables are determined by the assembling procedure and are known to in-
fluence the subsequent mechanical properties of the system in the quasi-static regime.
The quality of the obtained sample should also be assessed in view of its homogene-
ity and of the accuracy with which equilibrium conditions are fulfilled. Homogeneity
is particularly sensitive to the boundary conditions applied to the system as it is be-
ing prepared. In this article, we will discuss two types of boundary conditions: rigid
walls (applying controlled stresses or strains to the system), and (possibly deformable)
periodic cells (as described in [RD11]).

1.3 Equilibrium conditions

Regarding equilibrium conditions, several simple criteria might be used. Those crite-
ria should be satisfied for the correct force-carrying contact network to be identified.
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Typically, if the system is insufficiently equilibrated, some parts of the force-carrying
network, those bearing small forces, will not be clearly determined, and contacts will
keep opening and closing in the residual motion. We now draw up a list of simple
equilibrium criteria, both geometric and mechanical.

(i) All force-carrying grains should have at least m contacts per grains. m depends
on spatial dimension (D = 2 or 3), on the grain shapes, on the type of loading
applied and on contact interactions (see below);

(ii) the kinetic energy (both its translation its rotation parts) of all objects moving
with respect to the centre of mass of the system (which is usually immobile in
simulation practice) should be negligible.

The value ofm in criterion (i) (i.e. x1 = x2 = ... = xm−1 = 0) stems from the condi-
tion of stability applied to one grain, the rest of the assembly being fixed. Considering
smooth, strictly convex objects (no sharp edges or corners), one frictional grain cannot
be stable with less than two contacts (m = 2) in 2D. In 3D, a sphere with two contacts
can be equilibrated but with one mechanism (see [RD11] for details). In the presence
of gravity, spheres with only two contacts are no longer observed in practice. One
may require m ≥ 3. In the presence of resistance to rolling (and pivoting), it is pos-
sible to find equilibrated grains with m = 1. Frictionless assemblies with no rolling
resistance require larger values of m (for strictly convex, smooth objects: m = 3 in
2D and m = 4 in 3D if there is no cohesion and no gravity). The rattler proportion
x0 should vanish in the presence of gravity or body forces. In the sequel, the study
is restricted to disks (2D) or spheres (3D) with sliding friction but no resistance to
rolling or pivoting in the contacts (see Luding, Alert 2017 [LRW]).

As to condition (ii) it might be stated in a more quantitative form as follows. Let ec
denote the average kinetic energy per grain, and d the average diameter under pressure
P . Then, referring to the typical contact force PdD−1 in dimension D, one may
require

ec
PdD

< εE , with a sufficiently small number εE (one possible value, usually

acceptable in practice, is εE = 10−8).

Conditions on the balance of forces and moments should be valid for each grain for
the force-carrying structure to be correctly identified. Let us consider a particle i,
subjected to external force ~γi, and transmitting forces ~fij to each contacting neighbour
j. We define the absolute error in force balance on i, as:

δi = ‖
∑

j 6=i

~fij − ~γi‖,

and the relative error in force balance on i, as

∆i = δi/max
j

(‖~fij‖).

Similar definitions are adopted for torque balance equations. Equilibrium require-
ments are then expressed as follows, introducing preset tolerance levels εA and εR:
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(iii) for each grain i, δi < εA;

(iv) for each grain i, ∆i < εR ;

(v) similar conditions on moments.

Condition (iii) is necessary, but may not be sufficient to guarantee the quality of the
equilibrium state. If some grains are only carrying small forces of the order of εA, one
cannot tell whether they are in equilibrium and with which other grains they should be
in contact. εA should be adapted to the typical average contact force F (of the order of
P dD−1 for grains of diameter d under pressure P ). In practice, it is observed [AR07a,
PR08] that εA < 10−4F usually allows to identify the force network unambiguously.
But if one wishes to be sure that all contacts are exactly determined, one may also
enforce (iv), a more demanding condition. Setting εR ≤ 10−3 is usually satisfactory,
and ensures that the list of force-carrying contacts is correctly determined, and that
the forces themselves are accurately evaluated. Of course, the larger the simulated
system, the smaller the typical lowest contact forces at equilibrium, and it eventually
becomes impossible to evaluate them all accurately. It is however feasible in samples
of disks or spheres containing of the order of 10000 grains.

The present paper focusses on two frequent situations: isotropic granular assemblies
(section 2), under constant isotropic stresses, and anisotropic packings obtained by
deposition under gravity (Section 3), like in some laboratory procedures. In both
situations we investigate the homogeneity of the obtained configurations, which are
characterised with suitable state variables, and briefly discuss the influence of some
control parameters.

2 Granular assemblies under isotropic loading

We now focus on techniques designed to assemble granular packings in a homoge-
neous, isotropic stress state (a hydrostatic pressure), in the absence of body forces
(such as gravity). The sample shape is a rectangle in 2D or a rectangular parallelepiped
in 3D. Such samples are prepared by applying the desired pressure through some ma-
nipulations of the boundary conditions, which might significantly affect the results.
We therefore compare the samples obtained by periodic boundary conditions to the
ones confined within rigid walls. As first step, one should define the initial configura-
tion from which the DEM simulation starts.

2.1 The initial state before isotropic compression

Grain diameters should first be drawn according to the prescribed distribution (we re-
strict our attention here to circular or spherical particles, otherwise one should also
pick up shape parameters), and then the grain centres are either positioned according
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to one of the geometric algorithms [RD11], or placed on the sites of some regular lat-
tice, and then mixed, to produce a generically disordered configuration. This mixing
stage involves some dynamical simulation method, in which trajectories are computed
once the particles are attributed random initial velocities. Such calculations might in
principle be carried out with any of the DEM approaches described in the present
treatise, although deformable particle MD will usually prove less efficient than rigid
particle methods (contact dynamics, or event-driven calculations), because of the cost
of refining trajectories during collisions. One should therefore prefer CD or event-
driven methods at this stage. The mixing effect will be optimized in the absence of
dissipation, i.e., with frictionless particles and a coefficient of restitution equal to 1
(like in [Com02] or in [AR07a], in which the original “molecular dynamics for hard
spheres”, the event-driven method introduced in the 50’s by Alder and Wainwright for
the conservative hard sphere fluid, is implemented). The effects of this agitation stage
depend on the number of collisions per particle at a given solid fraction, and may also
be assessed in terms of the distance travelled by particles (diffusion). Fig. 1 is an illus-
tration of such a process for disks in 2D. Particles start on the sites of a square lattice,
with spacing l0, and then get agitated and mixed up until the average traveled distance
reaches 5 l0. One may also check for the isotropy of the final state, e.g., computing a
near neighbour fabric tensor defined via a radical tessellation. The computation cost
of this agitation stage is negligible compared to that of the subsequent compression
(of the order of one second of CPU time for the examples of Fig. 1).

2.2 Granular assemblies confined by rigid walls

One may distinguish two different methods to compress samples enclosed in rigid
walls: either the walls move inwards, or the grains are inflated within a fixed cell. The
calculations stop when an equilibrium configuration is reached with the prescribed
pressure on the walls.

2.2.1 Mobile walls

• Stress control:

In the first approach one exerts forces on the walls, which corresponds to the pre-
scribed pressure level within the granular sample. The wall is then regarded as a
mobile rigid object, just like any grain, with mass mp, velocity ~vp and acceleration
~ap. To simulate isotropic compression, one usually forbids wall rotations. To reduce
sources of inhomogeneities near the boundaries, it is better to use frictionless walls in
the compression of the granular packing. Thus one needs only to consider the motion
of a rigid wall along its normal direction (one degree of freedom). In order to fix the
motion of the centre of mass in rectangular or rectangular parallelepipedic cells, the
motions of opposite walls should not be independent. It is convenient either to fix one
of them, or to require opposite walls to have opposite velocities±~vp. In the latter case
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(a) (b)

(c) (d)

Figure 1: Illustration of agitation stage, simulated with Contact Dynamics in a periodic
cell of fixed size. (a) Sample of 1024 slightly polydisperse disks (min(d) = 0.9 ·
max(d)) initially placed on square lattice (spacing = max(d)). (b) Sample (a) after
10300 time steps. Distance traveled by grains, D: min(D) = 0.7d, max(D) =
11.4d, 〈D/d〉 = 5. (c) Sample of 3025 disks, with wider polydispersity (min(d) =
0.4 · max(d)), initially on square lattice with spacing max(d). (d) Sample (c) after
4600 time steps. Distance traveled by grains: min(D) = 0.2d, max(D) = 16.6d,
〈D/d〉 = 5.
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the external force conjugate ~vp (counted positively for inward motion) can be identi-
fied (on writing down its power) as 2ApP with P the prescribed pressure and Ap the
wall area, and at equilibrium it should balance the sum of normal forces exerted by
the grains on both opposite walls. In a simulation of an isotropic compression process
with walls, one thus has (at most) 3 degrees of freedom for the 6 walls in 3D, and 2
for the 4 walls in 2D. The cell may also be requested to keep fixed aspect ratios: for
instance, one may choose to compress a cubic cell by just reducing the edge length
of the cube. In such a case, one does not control independently all three principal
stresses along the 3 directions normal to the walls (only the average stress P might
be controlled), and the sample may end up in a state with different principal stress
values. This difference should dwindle and vanish, due to symmetry, as the system
size increases.

Whenever stresses are controlled, the walls are dynamical objects, and their motion
satisfies Newton’s second law, involving normal forces ~fip exerted by grains onto the
walls and external forces ~Fp applied to them:

~ap =
1

mp
·
[
~Fp −

∑

i∈P

~fip

]
; (1)

with P denoting the set of the indices of the grains contacting the wall.

The wall mass mp might in principle be chosen arbitrarily. In practice a convenient
choice, ensuring that the grains and the walls equilibrate on comparable time scales,
consists in attributing to the wall a mass of the order of the sum of the masses of the
grains that might come in contact with it. Thus in a square or cubic sample ofN grains
with average mass m one may choose mp = N1/Dm.

The wall motion is computed by integration of (1). The importance of inertia and
accelerations in the compression process might be evaluated using the inertial number
I [CR03, RC05], which reads, for a wall of area Ap (a length in 2D), transmitting
stress σ0 to the sample, of thickness Lp in the direction normal to the wall,

I =
‖~vp‖
Lp

√
mpd

σ0 Ap
. (2)

In general the final state varies with the maximum values of I reached in the compres-
sion process, and a slow compression limit is approached as I → 0. One may thus
choose to enforce a condition on I , limiting the wall velocities, so that the final state
will not be sensitive to the compression dynamics. Requesting I ≤ 10−4 is usually
sufficient in that respect.

Fig. 2 illustrates the isotropic compression of a 2D system, initially a “granular gas”
in which grains do not touch one another. Note that the condition on the velocity,
limiting the inertial number to low values really becomes relevant in the final stage of
such a process, when a contact network forms in the sample bulk, carrying stresses
on the order of σ0. In the beginning of the process, setting such an upper limit to the
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Figure 2: Illustration of an isotropic compression of a 2D ”granular gas” (3025 fric-
tionless disks) by exerting forces on the walls. Contact Dynamics computational
method.

compression rate might exceedingly slow down the simulation for loose arrangements
with few contacts.

Let us also mention the possibility to drive the wall with overdamped dynamics, in-
troducing a viscous force −ζ~vp in (1), opposing the wall velocity ~vp, which might for
large ζ dominate the inertial term, whence:

~vp =
1

ζ

[
~Fp −

∑

i∈P

~fip

]
. (3)

This was used in simulations of dense granular flows [dCEP+05].

• Control of displacements:

Another approach consists in imposing the wall positions. As they are gradually mod-
ified, this amounts to imposing increments of displacements and strains in the system.
An isotropic confinement with prescribed pressure might thus be obtained on progres-
sively adjusting the positions of the walls so as to balance external force ~Fp with the
forces exerted by the grains onto the wall:

~Fp = −
∑

i∈P

~fip (4)

In Molecular Dynamics, the solution to Eq. (4) exploits the elasticity of the contacts
between the grains and the wall. In practice, solving (4) might however involve some
iterations due to the non-linearity of the contact law. No such approach seems to
be available in Contact Dynamics because contacts are assumed to be perfectly rigid.
This approach may be applied simultaneously to opposite walls, which may thus move
independently in that case.

• Remarks:

As shown in Fig. 2, the isotropic compression process of a granular sample caused by
inward displacements of the surrounding walls, propagates a compaction front within
the sample. One should fear some lack of homogeneity of the final state, with differ-
ences between the centre and the periphery. Such inhomogeneities might be enhanced
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with frictional particles, apt to produce significant arching effects, potentially reduc-
ing stresses in the centre, and for which a greater sensitivity of the final configuration
to the assembling process is generally observed. Moreover, the presence of the walls
locally favours particle alignments and semi-ordered patterns.

Such wall effects were quantified in the 2D results of [Com02], shown in Fig. 3. Solid
fraction Φ and average contact force 〈f〉 are measured in 2D assemblies of friction-
less disks, with average diameter d, isotropically compressed within rigid walls, and
averaged over several samples, showing some systematic dependence on the number
of grains, N . As N increases, both quantities approach a finite limit, with a correc-
tion decreasing as N−1/2. This is interpreted as the contribution of a peripheral zone
(area ∝ N1/2) where the solid fraction is somewhat lower and the average contact
force somewhat larger than their values in the uniform bulk (area ∝ N for large N ).
This interpretation is confirmed on measuring the average force in the sample core,
〈f\p〉, on excluding a peripheral zone of thickness 3d. 〈f\p〉 (Fig. 3(b)) does not de-
pend on N , and coincides, within statistical uncertainties, with the large system limit
〈f〉‖N→∞.
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Figure 3: Averages of (a) solid fraction Φ and (b) mean contact force 〈f〉 over samples
with different numbers N of disks, isotropically compressed between mobile walls,
plotted against N−1/2. Error bars extend to one standard deviation on each side of the
average. Plot (b) also shows the 〈f\p〉, the mean force evaluated away from the walls.
Results from [Com02].

These data thus evidence a significant wall effect, which however disappears in the
bulk, by excluding an outer zone (a few diameters wide).

One may also expect the walls to induce some specific anisotropy in the distribution
of contact orientations (the fabric of the contact network), favouring contacts in the
directions normal to the walls. Fig. 4(b) shows a polar histogram of contact orienta-
tions. Such histograms are symmetric about the vertical axis (because contacts are not
oriented, angles θ and θ + 180◦ play the same role) and may thus be plotted on a half
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circle only. The left (dark grey) half of the circular plot and its right (light grey) half
respectively correspond to the statistics of contact orientations in the central part of
the sample, excluding a peripheral zone, and in the whole system. Respectively, the
expected anisotropy is present near the walls and disappears in the bulk (3 diameters
away from the walls), where the fabric is isotropic. The effects of the walls on the
fabric are also confined to their immediate vicinity.

0°

30°

60°

90°

−90°

−60°

−30°

(a) (b)

Figure 4: (a) Detail of an isotropically confined 4900 disk sample, with the usual
encoding of contact force intensity as stroke thickness. (b) Polar histograms of contact
orientations, for all contacts (light grey, right), and excluding the periphery (dark grey,
left). Statistics over 17 samples of 4900 grains each (about 150000 contacts). Results
from [Com02].

To test for contact density and stress homogeneity, the system is split into a set of
concentric, square “coronas” as shown in Fig. 5. Those coronas were chosen with
constant surface area (and, consequently, varying thickness a). Xc (see Fig. 5) grows
from inner to outer coronas, and for the outermost one approaches the half-width of
the sample, Xmax. Fig. 6(a) shows the average number of contacts per unit area as a
function of the position of the corona, evidencing wall effects, and homogeneity in
the bulk. A similar analysis can be carried out for the solid fraction, confirming the
interpretation of the results of Fig. 3(a). For solid fraction, and contact density (or
coordination number) isotropically compressed samples enclosed in rigid walls are
found homogeneous, apart from local wall effects, both with frictionless and frictional
grains.

The average stress, (σxx + σyy)/2, is also measured in each corona, and the results
are shown in Fig. 6(b). Stress components are evaluated with the classical formula
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[Lov44, Web66], suitable for equilibrated granular configurations, i.e.

σαβ =
1

Ω

∑

Nij

fαij l
β
ij , (5)

in which

• Ω denotes the volume (or the area in 2D) of the subsystem in which the average
stress is measured;

• Nij is the number of contacts within Ω,

• fαij denotes coordinate α (α = x, y in 2D, α = x, y, z in 3D) of the force
between two grains i and j in contact,

• lβij is coordinate β of the branch vector pointing from the center of grain i to
the center of grain j ∗.

a

a

Xc

Xmax

y

x

Figure 5: The square sample is split into equal area, varying thickness coronas, half
diameter Xc growing from central to peripheral ones.

Fig. 6(b) shows that stresses decrease on approaching the sample centre. The effect
is weak with frictionless grains, but it is quite important and cannot be neglected
in the presence of intergranular friction. This is the main drawback of the process
of isotropic compression through inward motion of rigid walls. One way to signifi-
cantly improve the system homogeneity is to apply load cycles (e.g., in simple shear).
This, however, also increases the density [FL95] and produces fabric anisotropy, with
∗These “centres” might be chosen arbitrarily within each grain. One usually uses disk or sphere centres.
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Figure 6: Homogeneity test of (a) coordination number, and (b) average stress, (σxx+
σyy)/2 (normalized by σ0, the applied macroscopic stress) in samples of 5041 disks,
isotropically confined within rigid walls. Averages taken within concentric coronas,
as shown in Fig. 5. Dotted lines indicate values averaged over the whole sample. Data
shown for frictionless disks (SF) and frictional ones (AF, friction coefficient µ = 0.5).
Results averaged over 10 samples, error bars indicate sample-to-sample fluctuations.
Contact stiffness parameter ([RD11]) κ = 1000.

favoured contact orientations along the direction of compression in the last cycle
[Com02].

Another method to improve stress homogeneity within the sample consists in applying
forces attracting grains toward the cell centre while the sample is being compressed,
with intensities that decrease in time and vanish as the final equilibrium is approached.
Although possibly efficient (see Fig. 7), this trick requires a delicate calibration of the
time dependence of this additional force field, which must be present long enough for
the inhomogeneity due to the compression process to be erased, but might lead to the
opposite effect, larger stresses in the centre, if it does not vanish soon enough. Another
drawback, apparent in Fig. 7, is the non-uniform density of contacts.

2.2.2 Fixed walls

With fixed walls, an isotropic compression is achieved on gradually increasing all
particle diameters, the growth factor being adjusted according to the desired stress
level. The rate with which diameters are increased might be chosen rather arbitrarily in
initial, loose “granular gas” states. As the measured pressure p increases and becomes
of the order of the prescribed value P , an adequate rule is to multiply, at a given time
step, all diameters by some factor 1 + α, where the small number α is proportional to
(P/p) − 1. The contact law will provide useful guidance for the choice of a suitable
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Figure 7: With the same notations as in Fig. 6, average contact density (a) and average
stress, normalized by σ0 (b), in same sample series with friction coefficient µ = 0 (SF)
and µ = 0.5 (AF), using the temporary centripetal force field trick.

factor, so that equilibrium under P might be approached at a reasonable rate, avoiding
too large unbalanced forces. Stresses in the final equilibrium state, just like in the fixed
cell aspect ratio version of the preparation method with moving boundaries, are not
exactly isotropic in one sample, but isotropy is retrieved at the statistical level (either
on averaging over many realizations of similar samples, or on approaching the limit
of large sample size).

Before the mechanical behaviour of a given material is probed in quasi-static condi-
tions, with a certain value of the friction coefficient µ in the contacts, it is possible
to use a different coefficient of friction µ0. One should however use µ0 < µ, be-
cause reducing the friction coefficient destabilizes an equilibrated granular packing.
A mechanical test with µ < µ0 would start with a dynamical collapse of the ini-
tial contact network, and would not qualify as quasi-static. Some authors [CV05]
defined the minimum and the maximum density states as those obtained, respec-
tively, with µ0 = µ and µ0 = 0. That the maximum density (referred to as “ran-
dom close packing” or RCP) state may be defined, as an equilibrium state of fric-
tionless particles under isotropic stress [OSLN03, AR07a], if the compression is fast
enough [AR07a, RCT07], is widely agreed upon. The definition of the loosest possi-
ble state, on the other hand, is more delicate, as it depends on the contact law (on the
friction coefficient, in particular) and, possibly, on the assembling process.

Anyway, the compression procedure based on inflating the particles proves able to
produce isotropic, homogeneous states (apart from local wall effects). As µ0 grows
from 0 to µ in the preparation stage, the material behaviour, under subsequent growing
deviator stress, gradually changes from strongly dilatant to contractant (Fig. 8): the
classical behaviour of granular materials with dense or loose initial configurations is
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Figure 8: Triaxial tests on polydisperse bead samples (5324 particles, Rmax/rmin = 2,
friction coefficient µ = 1), initially assembled in states of different solid fraction (the
arrows indicate how curves vary as Φ grows from 0.6 to 0.648) on varying the friction
coefficient in the isotropic compression stage, carried out with inflatable particles.
(a) sinϕ with ϕ the mobilized internal friction angle, versus axial strain ε11. (b)
Volumetric strain versus ε11. (Results by P. Villard, Laboratoire 3SR, Univ. Grenoble
Alpes, France).

observed.

2.3 Confined granular assemblies and periodic boundary condi-
tions

We now discuss the assembling process by isotropic compression with periodic bound-
ary conditions (PBC), which allows one to obtain statistically homogeneous samples
(no wall effects without walls!). Applying periodic boundary conditions to the simula-
tion cell (a parallelogram in the example of Fig. 9) amounts to considering an infinite
collection of copies of the cell, in correspondence with one another by a group of trans-
lations (like the pattern on some wallpapers). In a periodically repeated cell (Fig.9),
any distinction between “central” and “peripheral” regions is meaningless: given one
definition of the periodic cell, all of its images by an arbitrary translation are equally
acceptable definitions. In 2D, one may also imagine that the cell is the surface of a
torus (but the dynamics are not affected by any curvature effect). Confining granular
assemblies with PBC is quite similar to the inflatable grain approach of Sec. 2.2.2, but
instead of expanding grains within a fixed container one considers fixed-size grains
within some homogeneously shrinking periodic space. The dynamics of a collection
of grains within a deformable periodic cell are dealt with in detail in [RD11]. Only a
few essential aspects are presented here. A linear operator h is defined, which maps
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(a) (b)

Figure 9: Periodic boundary conditions: an example in 2D. Dark grey particles belong
to the simulation cell, which is surrounded by infinitely many identical replicas in all
directions. (a) “Granular gas” before isotropic compression. (b) Compressed state,
in equilibrium under isotropic pressure. Force networks are periodic too, and parti-
cles in the simulation cell interact with one another and also with their copies within
neighbouring copies of the cell.

vector ~s, with coordinates sα, −1/2 ≤ sα ≤ 1/2, 1 ≤ α ≤ D, within a unit cube
(or square in 2D), onto vector ~r, the actual position vector in the simulation cell. Thus
in the example of Fig. 10, vectors ~u and ~v are the column vectors of the matrix of h.
Particle velocities ~̇r comprise two contributions:

~̇r = ḣ~s+ h~̇s, (6)

the first one expressing the effect of the global shrinkage (or expansion) of physi-
cal space. In application to isotropic compression, one may use a diagonal matrix
for h (i.e., the sample remains a rectangular parallelepiped). One may either control
strains and impose, e.g., some shrinking or expansion rate to the cell, or directly write
down dynamical equations for h (stress-controlled procedure). The aim we are pursu-
ing here is to obtain well-equilibrated states under some prescribed stress level. The
Cauchy stress tensor in a periodic system is to be evaluated with eq. (5)∗, in which the
sum runs over all interactions of the particles within the cell. Some of them involve
some “copies” of those particles, belonging to adjacent cell replicas, and the branch
vector involved in the formula should join the centres of objects that are actually in
contact.

∗The kinetic part of stresses,
N∑

i=1

mi~vi ⊗ ~vi, which should be added to the contribution written in (5)

[AR07a], vanishes in the quasi-static limit.
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Figure 10: Vectors defining the basic cell, a parallelogram, in 2D sample with PBC.

In the stress-controlled isotropic compression procedure, the prescribed value of the
stress is σαβ = σ0δαβ and the cell motion is driven by the difference between σ0 and
internal stress σαα, for each direction α. One writes

ḧαα
hαα

=
LD−2

M
[σαα − σ0] , (7)

in which M is a generalised mass associated to global strain parameters and L is a
reference cell diameter (one may use L = hαα). Eq. (7) should be integrated along
with the equations of motion of the grains, until the system stabilizes in an equilibrium
state with σαα = σ0. MassM should be of the order of the sum of all particle masses†

for the characteristic frequency of oscillation of hαα to be similar to the one that would
be observed in a subsystem of size L within a macroscopic granular medium. Such a
choice for M leads in practice, as the final equilibrium is approached, to rather slow
changes of cell dimensions compared to the equilibration times of grains within a
fixed cell [AR07a]. As for confining procedures with rigid walls, one may choose to
enforce an upper limit to strain rates ḣ/h, inertial effects being characterised by the
inertial number I defined in eq. (2) (in which ḣ/h should replace ||~vP ||/LP ).

PBC’s are observed to produce satisfactorily homogeneous and (for isotropic stresses)
isotropic static equilibrium states. As with the method of inflatable grains, one may
compress with a friction coefficient µ0 smaller than the one used in the subsequent
quasistatic testing of the assembled material. On setting µ0 to zero, homogeneous
RCP configurations are obtained, with Φ close to 0.64 in equal-sized bead assemblies.
The coordination number on the force-carrying structure, or corrected coordination

†In practice, one can observe that when M is of the order of the mass of the biggest grain it works fine.
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number, defined as
z∗ = z/(1− x0), (8)

is equal to 6 with spherical beads in the limit of rigid contacts (i.e., for large enough
values of stiffness parameter κ defined in [RD11]). This is due to the generic iso-
staticity property of force-carrying networks in static equilibrium states of rigid, fric-
tionless disks or spheres [Rou00, Com02, OSLN03, AR07a]. As µ0 increases towards
µ, looser, less coordinated states are obtained (z may decrease, typically, to about 4
and z∗ to about 4.5 for moderate values of µ – for 3D spheres). More remarkably,
it is also possible [AR07a] to produce very dense samples, with Φ approaching the
maximum RCP value, but with quite low coordination numbers (z∗ ' 4.5, z ' 4 –
for 3D spheres and z∗ ' 3 – for 2D discs). Such states are obtained on maintaining
strongly agitated, granular gas states at very high densities, close to the maximum
solid fraction, and then isotropically compressing with the final value µ of the fric-
tion coefficient. In practice, it is convenient to dilate RCP configurations so that all
contacts open, then to mix the grains with some event-driven, energy-conserving pro-
cedure, before applying the confining pressure to the sample. The observation that
very different coordination numbers can correspond to the same density in homoge-
neous, isotropic granular samples raises unsolved questions about which structures
are obtained in laboratory experiments, and indicates that the internal states of a ho-
mogeneous sample of granular material under a given isotropic pressure should not
be only characterised by their density (even with a perfectly isotropic fabric). Mea-
suring elastic moduli, which are sensitive to coordination numbers [AR07b], could
provide useful clues. Equally dense, but differently coordinated isotropic initial states,
once subjected to a triaxial compression test, reach about the same maximum deviator
stress, but the strain needed to mobilize internal friction is larger for poorly coordi-
nated initial packings [RC05, ECC+06]. An example of 2D DM simple shear tests on
9801 discs giving quite same conclusions is shown on figure 11.

3 Granular samples under gravity

3.1 Homogeneity

Granular packings subjected to their weight are necessarily anisotropic, as the vertical
direction plays a special role. Denoting the vertical coordinate as z, one generally has,
in the absence of any further cause of anisotropy, σxx = σyy 6= σzz . Stresses will also
be inhomogeneous, with σzz increasing with depth in order to balance the weight of
the material lying above altitude z. If the free surface is horizontal at altitude z = H ,
one should have, provided lateral walls do not exert any vertical force,

σzz(z) =

∫ H

z

ρmΦ(u)gdu, (9)

in which Φ(u) denotes the solid fraction, varying with vertical coordinate u, and ρm
is the mass density of the solid grains. On writing (9), it is implicitly assumed that Φ
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Figure 11: Simple shear tests on packings of 9801 frictional polydisperse disks with
periodic boundary conditions. 3 different samples are tested: sample A is initially
very dense (φ0 = 0.852) with a high coordination number (z∗0 = 4.14); sample A’ is
initially very dense (φ0 = 0.848) but with a small coordination number (z∗0 = 3.32);
finally, sample B is initially loose (φ0 = 0.810) with a small coordination number
(z∗0 = 3.28). (a), (b) and (c) are zooms of the force networks of samples A, A’ and B.
(d) Gives the evolution of the shear strength along the shear strain for the 3 samples
tested. (e) shows the volumetric (surface in 2D) evolution along the shear strain for
the 3 samples tested.

116 Good practice for sample preparation – Construction of granular packings

ALERT Doctoral School 2017



is uniform in horizontal layers. We focus here on the numerical procedures suitable
to prepare granular samples in equilibrium under their own weight, in well-controlled
states with the least possible level of inhomogeneity. This aim can be characterised by
the two criteria:

(a) transverse isotropy of internal state within horizontal planes;

(b) uniform values of all dimensionless state variables.

Those two conditions define an “ideal” sample under gravity, which is the most ap-
propriate to investigate intrinsic material behaviours. Conditions (a) and (b) should be
satisfied, at least approximatively, for numerical samples to be used as Representative
Volume Elements (RVE).

Transverse isotropy (a) means that all horizontal directions play the same role. Con-
dition (b) ensures that the solid fraction, the coordination number, the distribution
of distances between neighbouring grains (normalized by the average diameter), the
mobilization of friction or the fabric parameters should be uniform, i.e. their average
values in a subsystem are independent of their positions inside the sample. By taking a
constant Φ in (9), stress σzz will increase linearly with depth, like the hydrostatic pres-
sure in an incompressible fluid. Lateral boundaries should not affect the internal state
of the material for state variables to be uniform in horizontal planes. In practice fric-
tional vertical walls will balance some part of the weight and perturb vertical stresses,
possibly throughout the whole sample, especially for tall, elongated shapes. Thus,
the so-called Janssen effect in silos [Spe06] entails that the vertical stress, instead of
steadily increasing with depth, approaches a maximum, of the order of ρmΦgL, if L
is the sample width. Moreover, the stresses in horizontal planes are not uniform, with
σzx, σzy vanishing near the centre and reaching a maximum value at the container
walls. Those effects are localized to small lateral regions close to the wall if H � L.
In numerical simulations one should therefore choose frictionless walls, or laterally
periodic boundary conditions, unless the Janssen effect is desired.

Condition (b) is quite stringent, and some small mitigations should be accepted in
practice. First, near the bottom substrate, and near the free surface, different local
states are usually observed. These are boundary effects, and one may check in prac-
tice that they do not affect the bulk material behavior. Condition (b) implies that the
material should not be sensitive to stress intensity, thereby assuming that the limit of
rigid contacts is approached (κ → ∞). The elastic deflection of contacts necessarily
increases with depth, but its influence on packing geometry should be negligible. If
condition (b) is correctly satisfied, then one important result characterising the mate-
rial state is the ratio of principal stresses (known as “the coefficient of earth pressure
at rest” in a geotechnical context [Jak44]))

K0 =
σxx
σzz

=
σyy
σzz

, (10)

which should be uniform within the sample, except for possible corrections near the
bottom or the free surface. If conditions (a) and (b) are satisfied with good approxi-
mation, then the material state might be analysed as if it were perfectly homogeneous,
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and transversely isotropic, apart from force intensities which increase linearly with
depth. One remaining difference [ECC+06] with samples assembled under uniform
stresses, without gravity, but with the same ratio K0, should be pointed out: samples
under gravity do not contain any rattler, m > D for each grain. However some of
the grains are only subjected to their weight (plus, possibly part of the weight of one
or a small number of grains relying on it). Those grains are analogous to rattlers in
the absence of gravity, and their contacts should be ignored before referring to ho-
mogeneous granular structures without gravity. Thus one can define the corrected
coordination number z∗ as the value of the coordination number within the assembly
once it is deprived of those grains and their contacts. This definition is the analog of
relation (8) used in homogeneously confined systems.

In the sequel three procedures to assemble grains under gravity are discussed: grain
by grain deposition, dumping and controlled pluviation.

3.2 Grain-wise deposition

On depositing grains one by one, and letting them stabilize under their own weight
on the free surface of the sample, one obtains remarkably anisotropic structures. Thus
Calvetti et al. [CCL97], in an experimental study of a model 2D assembly of parallel
cylinders (the so-called “Schneebeli material” [Sch56]), assembled samples of about
1000 grains, each one placed manually after the other. Their model material was
polydisperse, cylinder diameters ranging between 8 mm and 20 mm. The resulting
fabric exhibited quite a strong anisotropy, peaking in orientations at±45◦ with respect
to the horizontal direction. Moreau [Mor00], in a numerical simulation by DEM of
a grain-wise deposition procedure, observed similar results on fabric anisotropy, with
polygonal particles.

The granular layer shown in Fig. 12, in equilibrium under its own weight, is the re-
sult of such a simulation of a grain-wise deposition process. The rough substrate is
a monolayer of fixed grains, and the simulation cell is laterally periodic. The assem-
bling rule implemented in that case requests each grain to have two contacts before a
new one is deposited. The new grain is then placed on top of the free surface, with a
velocity equal to zero. Given a randomly chosen value of its (horizontal) coordinate
x, drawn with a uniform distribution within the cell, its coordinate in the vertical di-
rection takes the lowest possible value allowed by the non-interpenetration condition,
so that it touches one of the previously deposited grains.

Fig. 13(a) shows that a very strong fabric anisotropy is obtained with this assembling
procedure. Favoured directions correspond to the contacts of a disk supported by
two neighbours. The grain-wise deposition procedure produces samples of uniform
solid fraction, apart from local bottom and free surface effects, as shown in Fig. 14(a).
Beyond a thin superficial layer, local stresses σyy and σxx increase linearly with depth,
as expected, see Sec. 3.1. The earth pressure coefficient, K0, can be identified as the
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Figure 12: A horizontal layer of 3600 disks deposited one by one, in equilibrium
under its weight, on a rough substrate. Force intensities are encoded, as usual, as line
thicknesses.

(a) (b)

Figure 13: Histogram of contact orientations in layers of frictional grains. Statistics
obtained on 10 samples of 9801 grains. The dotted line corresponds to an isotropic
fabric. Grains only supporting their own weight are excluded from the statistical anal-
ysis. (a) Grain-wise deposition, corrected coordination number z∗ = 3.53. (b) Dump-
ing, z∗ = 3.06.
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constant ratio of vertical stress gradients (one has K0 ' 0.5 in the present case):

K0 =

[
dσyy
dy

]−1
dσxx
dy

. (11)

Stress ratio σxx/σyy approaches K0 as depth increases.
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Figure 14: Analysis of grain-wise deposited layers. Data measured in thin layers,
averaged over 10 samples of 9801 grains (κ = 1000 at bottom, the pressure due to
the self-weight of the sample being maximum at the bottom), plotted as functions of
altitude Y above the substrate, normalized by layer thickness Ymax: (a) local solid
fraction Φ; (b) horizontal (σxx) and vertical (σyy) stresses. P is the bottom vertical
stress.

3.3 Dumping

This procedure (which could be termed “sedimentation” in the presence of a fluid)
consists in suddenly “plugging in” gravity in a homogeneous granular gas sample. The
final structure is characterised by a rather small level of fabric anisotropy (Fig. 13(b)).
The dumping procedure is simple and its computational cost is much lower than that of
the grain-wise deposition method. One major drawback is, however, the inhomogene-
ity of the final state, which does not meet the criteria of Sec. 3.1. The solid fraction is
usually not constant. Fig. 15 shows a slight, but systematic increase of Φ away from
the bottom (compare to Fig. 14(a)). In the dynamical phase following the application
of gravity, the granular layer hits the fixed bottom wall of the container, whence an
elastic wave travelling up the sample, which tends to decrease the density in the bot-
tom region bouncing off the substrate. This effect depends on the initial density, on the
velocity of grains hitting the ground, and, likely, on contact stiffness too. Fig. 15(b).
evidences a nearly hydrostatic vertical stress field (the effect of the density gradient

120 Good practice for sample preparation – Construction of granular packings

ALERT Doctoral School 2017



remaining small in that case), and a coefficientK0 closer to 1 (K0 ' 0.9) with respect
to samples made by grain-wise deposition.
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Figure 15: Analog of Fig. 14, with 10 samples of 9801 grains each, assembled with
the dumping method.

3.4 Controlled pluviation

Among the different procedures used in soil mechanics laboratories to prepare samples
of granular materials, controlled pluviation, as schematised in Fig. 16, is known to
produce samples with satisfactory homogeneity. This procedure was studied in detail,
experimentally by Benahmed [Ben01] (see also [BCD04]), and numerically by Emam
et al. [ECC+06]. The method is designed to ensure a constant flux of grains falling
onto the free surface of the growing sample, with a constant mass flow rate per unit
area Q, and constant vertical velocity VP . In practice, grains are subjected to a free
fall from height HP above the free surface, and relation VP =

√
2gHP is assumed,

neglecting the hydrodynamic drag in air (which is a good approximation in practice
for HP of the order of 10 cm and grain diameters above 0.1 mm). To maintain a
constant HP the upper reservoir has to move up with the same rate as the free surface.
The final state is controlled by parameters Q and VP , which are conveniently put into
dimensionless form, for grains of diameter d, made of a material with mass density
ρ, on defining a reduced rate Q∗ = Q/(ρ

√
dg) and a reduced height of free fall

H∗P = HP /d =
V 2
P

4g2d
. Q∗ may be regarded as the ratio of a local rearrangement time

for one grain on the surface,
√
d/g, to m/Qd2, the characteristic time during which a

grain belongs to the agitated layer, a few diameters thick, near the free surface,

The numerical implementation of the controlled pluviation procedure in discrete sim-
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Figure 16: Schematic view of the experimental controlled pluviation apparatus. Holes
in the bottom of the upper reservoir control the mass flow rate Q. Crossed sifters
(grids) distribute the “raining” grains uniformly on the free surface. The free fall of
the grains is assumed to start with zero velocity at the lower grid. The reservoir and
the grids are moving up with controlled velocity, so that the height of free fall above
the free surface of the sample is constant [ECC+06].
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ulation is quite simple: grains are placed onto the free surface at randomly chosen
positions in the horizontal plane, with velocity VP , with a frequency corresponding to
the desired mass flow rate per unit area. For large flow rates, the procedure becomes
rather ambiguously defined, especially for small HP , because of the lack of a clear
definition of the free surface, when its fluctuations are of the order of HP . In the op-
posite limit of very small deposition rates, the choice of H∗P = 0 corresponds to the
grain-wise deposition procedure of Sec. 3.2.

Figure 17: Numerical samples of glass beads of diameter d, assembled by controlled
pluviation. Distribution of | cos θ| (fabric anisotropy) in a numerical sample of 10000
beads assembled by controlled pluviation, normalised by the coordination number.
Continuous line: its expansion in Legendre polynomials to order 4. Dotted line: its
expansion to order 6. Results from [ECC+06].

The fabric anisotropy, in transversely isotropic 3D pluviated samples, is conveniently
expressed by the probability density P (cos θ) of the cosine of the angle between the
contact normal and the vertical direction. P (cos θ) is an even function with an expan-
sion by Legendre polynomials of even order

P (cos θ) =
+∞∑

k=0

B2kP2k(cos θ). (12)

In practice the three first terms (k = 0, 1 and 2) often suffice to parametrise the
distribution with good accuracy, as shown in Fig. 17, and coefficients B2 and B4 can
be obtained measuring moments µ2 = 〈cos2 θ〉 and µ4 = 〈cos4 θ〉. For isotropic
fabrics, P (cos θ) is constant in interval [0, 1] (uniform distribution), and one has µ2 =
1/3 and µ4 = 1/5.

Simulation results show that controlled pluviation produces homogeneous samples
satisfying the criteria of Sec. 3.1, with local corrections near the substrate and near
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Figure 18: Numerical samples of glass beads of diameter d, assembled by controlled
pluviation. Horizontal (σxx, grey open squares) and vertical (σyy , grey square dots)
stress versus altitude y (in units of d). Solid, thick line: solid fraction Φ versus y/d.
Results from [ECC+06], similar to [IWML14].

the free surface. A constant density is obtained (Fig. 18). Likewise, the coordination
number z is uniform within the sample. Beneath some surface layer (several diame-
ters thick), horizontal and vertical stresses grow proportionally, evidencing a constant
coefficient K0 in the limit of large systems. Near the surface, ratios σxx/σyy closer
to 1 reflect the history of the assembling process. The recently deposited material
belongs first to an agitated fluid-like layer penetrating a few diameters below the free
surface with a nearly isotropic stress tensor. Then, as it is buried at greater depth, a
solid structure forms and supports anisotropic stresses. It may be checked that the
buried material, if subjected to an oedometric test, responds with characteristic stress
ratio K0 [IWML14]. The stress anisotropy is observed to increase (i.e., coefficient
K0 decreases) as HP increases, as does the solid fraction Φ. Ref. [ECC+06] gives
a functional form for the dependence of Φ on HP /d for fixed reduced flow rate Q∗.
Increasing Q∗, on the other hand, will reduce Φ, as grains have less time to rearrange
into a more densely packed structure.

Samples numerically assembled on simulating controlled pluviation are very good,
judging from the homogeneity criteria we have been emphasizing in the present arti-
cle. Their properties, for given material characteristics and given control parameters
H∗P and Q∗, are reproducible. One drawback, though, at least for spherical beads, is
the inability of the pluviation technique to produce loose samples (i.e., which would
contract under shear). Experimental results with glass beads [ECC+06] also indicate
that only very dense to moderately dense samples are obtained by controlled pluvi-
ation in the laboratory; this is most likely due to a specific behaviour of spherical
particles, as opposed to sand grains [Ben01]. Another issue is whether, or to what
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extent, laboratory samples and numerical ones, both prepared by controlled pluvia-
tion, with the same parameters H∗P and Q∗, have the same internal state. One may
check, at least, that the dependence of the final solid fraction Φ on Q∗ and H∗P is
similar [ECC+06]. In principle, provided contact laws are correctly calibrated, exper-
imental and numerical results should coincide. It turns out, though, that, unlike the
rheological behaviour of granular materials in quasi-static conditions or in dense flow,
the properties of samples produced by pluviation depend sensitively on the viscous
terms of the contact law which govern the dissipation in collisions (or, in other words,
on the coefficients of restitution). As such dissipative ingredients of micromechanical
laws implemented in simulations do not usually result from a physical identification
approach, accurate quantitative comparisons between experiments and simulations are
still difficult (for more details, see ALERT 2017, papers of Martin [Mar] and Luding
[LRW]).

Results from controlled pluviation studies might contribute to explain the hetero-
geneities obtained with other procedures. In the dumping method, the grains near
the bottom experience a free fall over from a lower altitude, and thus tend to assemble
at lower density than those falling from the top part of the initial configuration, due to
a smaller HP . However, the accretion rate also increases because grains from the top
accelerate more, hence one has a lower Q∗ for the bottom grains, which would tend to
induce a larger density. It seems that both effects do not compensate each other. The
elastic wave mentioned in Sec. 3.3 introduces another phenomenon, though, which is
not accounted for on referring to controlled pluviation. Another assembling procedure
consists in pouring grains with a constant (dimensionless) flow rate Q∗ from a fixed
altitude HV . Thus, the height of free fall H∗P = H∗V − y/d decreases as the vertical
coordinate of the free surface, y, increases. Such samples should exhibit a density
gradient, and form looser structures at the top, especially if H∗P decreases to low val-
ues. Fig. 19 shows that the numerical results abide by this prediction in quantitative
form, as the local density conforms to the Φ dependence on H∗P , applied locally with
a gradually varying H∗P = H∗V − y/d.

4 Conclusions

In this article, we have been focussing on the numerical procedures suitable to pre-
pare representative volume elements of material in homogeneous states, to be further
tested like in [TLM]. Like in the bulk of the published numerical studies on static and
quasistatic properties of granular materials, we did not attempt to reproduce labora-
tory assembling procedures quantitatively. How to design accurate numerical models
of dynamical processes in which agitated, fluid-like materials jam and stabilize in
history-dependent solid configurations is still quite an open issue, due to the influence
in such situations of features of the models that are not identified in a physical ap-
proach at the contact scale (e.g., viscous dissipation. See also [Mar, LRW]). Among
the wide variety of numerical recipes used in simulations to assemble samples in static
equilibrium in a given state of stress, a few ones have been discussed, with emphasis
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Figure 19: Vertical solid fraction profile in laterally periodic 3D samples assembled
under gravity. Samples V55 and V70, obtained by pouring grains from constant alti-
tude HV (55 or 70 diameters) above the container bottom exhibit density profiles in
agreement with the controlled pluviation results, applied locally (dotted lines), with
varying pluviation height Hv − z. C50 is a constant density profile obtained with the
controlled pluviation (constant H∗P = 50) procedure.

on the homogeneity criteria that a sample should satisfy for the intrinsic constitutive
laws of the material to be adequately investigated in relation to its microstructure and
micromechanics. Possible sources of inhomogeneities, and systematic tendencies re-
garding the influence of control parameters governing the assembling process on the
final internal state of equilibrated samples have been reported, in the hope that our
study, although not exhaustive, will provide useful guidelines for new practitioners of
discrete element simulations.
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de liquéfaction statique d’un sable. Comptes-Rendus Académie des Sci-
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DEM applied to soil mechanics
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Dense granular materials, as soils, behave differently from classical solids. Soils
thus can barely be described by the continuum theories developed for solids, with at-
tempts in this direction leading to a wide class of empirical correction terms. In fact,
the behavior of the material at the macro-scale, considering the continuum fields of
density, strain and stress, is intimately related to particle-scale variables and kinetic
processes that are typically not known. Already from its first appearance in the late
seventies DEM was found to be a powerful tool for modeling the behavior of soils
taking the particles and their micro-mechanics into account. DEM allows the simu-
lation of fairly complex non-linear, bifurcation, stability and interaction problems in
geotechnical engineering, and standard laboratory tests can be easily simulated.
In this chapter we address some well known geo-mechanical and -technical element
tests, namely triaxial and shear tests, as well as wave propagation in soil samples, and
show how to use DEM to correctly and effectively reproduce them. Non-linear hys-
teretic stress-strain and -volume responses of the material can be reproduced already
by simple particle contact models. On the other hand, DEM offers the unique chance
to ”look inside” the soil samples such that microscopical information can be inferred
in addition to the macroscopic field information that is also available from laboratory
tests. Long-term goal is to use such insights to develop a new class of continuum
models, based on the micro-scale mechanics, to describe large-scale industrial and
technical applications.

1 Introduction

In our daily life we are surrounded by granular materials like soil, sand, coffee, nuts,
food- or detergent-powders, pharmaceutical products like tablets, and many others.
Granular materials constitute over 75% of raw materials feedstock to industry, includ-
ing pharmaceutical, mining, agriculture, chemical, biotechnological, textile, etc. In
spite of their ubiquity and apparent simplicity, their behavior is far from being fully
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understood. This leads to the loss of about 10% of the world’s energy consumption in
processing, storage and transport of granular materials, and to uncontrollable natural
hazards, related to avalanches or landslides due to instability of slopes or foundations.

These materials behave differently from usual solids or fluids and show peculiar me-
chanical properties like dilatancy, history dependence, ratcheting and anisotropy. The
behavior of granular materials is highly non-linear and involves irreversibility (plas-
ticity), possibly already at very small strains, due to rearrangements of the elementary
particles [Bar94, God90, SNDD09]. Furthermore, complex soil behavior also orig-
inates from the multi-phase nature of these materials that exhibits both elastic and
plastic non-linearities due to solid-fluid coupling. Non-linear behavior can be char-
acterized by rigidity and degree of non-linearity, which can be determined from mea-
surements of soil stiffness, peak strength and failure strain [Atk00].

In analogy to “classical” solids, the behavior of granular materials depends on the
amount of deformation the sample is subjected to. Roughly speaking, we can distin-
guish (i) an elastic regime at very small strain, (ii) a non-linear elasto-plastic regime
that holds from small to intermediate strain, and (iii) a fully plastic regime at large
strain, where the material flows (solid to fluid transition) at constant stress and volume
– if sheared long enough. As special note on the elastic regime, soil behavior is consid-
ered to be truly elastic only in the range of extremely small strains. For slightly higher
strain, soil already exhibits a non-linear stress-strain relationship, even though stress
is almost fully recovered under unloading. For larger strain, the material deforms ir-
reversibly and deformations are permanent (plastic). The elastic material stiffness is
defined only for small strain and can be found from measurements of the (shear) wave
velocity in situ or laboratory tests or by probing, i.e. incremental stress-strain tests.
The peak strength of the material and its flow parameters can be measured in routine
laboratory tests at larger strains, even though the initiation of shear bands must be
carefully taken into account, see Fig. 1.

In this chapter, we explore the different strain regimes of soils with the aid of the Dis-
crete Element Method (DEM), as introduced in the chapter by Luding [LRW], in the
case of dry material; for alternative particle simulation approaches, see Refs. [LRW,
TWT, Rad] and for the modeling of (partly) saturated samples, see Ref. [DAM+]. We
briefly explain the techniques used to experimentally characterize soils in each regime
and then we show how to carry on these experiments numerically with DEM, see also
Refs. [CR, DS]. DEM simulations of (element) tests in order to complement labo-
ratory studies, require properly calibrated contact models [LRW, Mar] as well as a
careful preparation of the samples [CR] before they can provide additional informa-
tion on the particle-scale, which is usually not accessible experimentally. From such
information/data, novel continuum constitutive models (based on micro-mechanical
parameters like micro-structure, anisotropy or particle orientations, along with the
traditional fields stress, strain and density) can be developed [LRW, TWT] to better
predict the soil behavior in large scale applications.

The paper is organized as follows:
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Figure 1: Strain regimes of soil and typical characterization tests. Notation: BE is a
bender element; FFRC is a free-free resonant column test; RC is a resonant column
test; TX is a triaxial test; DS is a direct shear test, where γtl is the linear elastic
threshold strain; γtd is the degradation threshold strain [Atk00, LSL14].

Section 2-Numerical background: Brief overview on the numerical modeling
and parameters used for simulations.

Section 3-Sample preparation: Brief overview on the sample preparation for
numerical element test simulations.

Section 4-Elasticity (very small strain stiffness) in geomaterials: Review of
the most common used techniques to measure elastic stiffness of soils at very
small strain and numerical simulation of both static and dynamic approaches.

Section 5-Element tests for small and intermediate strain: Several exam-
ples of typical element tests at small and intermediate strain, namely uniaxial
compression test, triaxial and shear tests.

Section 6-Summary and conclusion.

2 Numerical background

The Discrete Element Method (DEM) [CS79, Lud08, LRW, Mar] investigates the
response of soils to deformations/loads by looking at the constituent particles. At the
basis of DEM are force laws [LRW, Mar] that relate the interaction force to the overlap
and tangential displacement of two particle contact surfaces (Fig. 2). If all forces fi
acting on particle i are known, the problem is reduced to the integration of Newton’s
equations of motion for the translational and rotational degrees of freedom. Gravity

Taghizadeh, Luding, Magnanimo 131

ALERT Doctoral School 2017



is neglected in all simulations here, so that the applied deformations can be assumed
isotropic.
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Figure 2: (a) Normal contact model with the normal overlap distance δn. (b) Tangen-
tial contact model with the tangential displacement δt. Tangential force is coupled to
the normal force via Coulomb’s law, ft ≤ µsfn, where for the sliding case one has
dynamic friction with ft = µdfn.

The simplest normal contact force model, which takes into account excluded volume
and dissipation, involving linear repulsive and linear dissipative forces, is given as
fn = fnn̂ = (kδn + γδ̇)n̂, where k is the spring stiffness, γ is the contact viscosity
parameter, δn is the overlap and δ̇ is the relative velocity in the normal direction n̂.
An artificial background dissipation force, fb = −γbvi, proportional to the velocity vi
of particle i is added, resembling the damping due to a background medium, as e.g.
a fluid. For more realistic contact interactions in the normal direction, the Hertzian
model must be considered [LRW, Mar, Lud98]. Note that the choice of contact model
(linear or non-linear) affects the collisional behavior between two particles as well as
the bulk behavior [JS06]. When the linear and Hertzian contact models are compared,
a major difference is due to the initial contact stiffness, where the former presents a
finite value, while the latter has stiffness proportional to deformation. However, the
difference between the two models becomes smaller when the consolidation pressure
is higher. We use linear contact model for examples in the following sections as it is
simple and easier to implement.
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DEM simulations are slow when large-scale phenomena and industrial applications
of granular materials are taken into account. Even with the most advanced compu-
tational techniques available today, it is not possible to simulate realistic numbers
of particles with complex geometries. Thus, continuum models are more desirable
to describe granular materials where principles of continuum mechanics can be ap-
plied. In a classical continuum model, the mechanical behavior of the materials is
based on the relation between stress and strain [GL13, LRW, TWT]. However, a com-
prehensive description of the granular behavior must not cancel out features at the
microscale, that, in principle, govern the behavior at macroscale, such as geometri-
cal arrangements of the particles and restructuring. In order to bridge this gap, we
propose to use a micromechanical-based continuum description, where information
at the microscale are transferred to larger-scale, via the so-called micro-macro transi-
tion [KLM14, LRW, TWT]. In the following, we describe the general procedure to
average microscopic quantities to continuum tensorial variables.

2.1 Averaged macroscopic parameters

To describe and better understand the relationships between macroscopic quantities,
tensors are split up into isotropic, deviatoric and antisymmetric parts. Any tensor T
can be decomposed as:

T = 1

2
(T + T T ) + 1

2
(T − T T ) = T sym + T skew, (1)

where T sym and T skew are the symmetric and antisymmetric parts of the tensor and
the superscript T stands for transpose. Since we will focus on the symmetric part, we
drop the subscript and further decompose T ∶= T sym uniquely into its spherical and
deviatoric parts as

T = TvI + TD (2)

with Tv = (1/3)tr(T ) and the traceless deviator TD = T − TvI . The latter contains
information about the eigensystem of T , that is identical to the eigensystem of TD
itself.

Any (deviatoric) tensor can be transformed using a transformation matrixR to obtain
its diagonal form:

T eig
D = ⎛⎜⎜⎝

T
(1)
D 0 0
0 T

(2)
D 0

0 0 T
(3)
D

⎞⎟⎟⎠ =RT ⋅ TD ⋅R, (3)

T
(i)
D = Ti − Tv/3, where Ti’s are eigenvalues of T . Also, T (1)D , T (2)D and T (3)D are the

eigenvalues sorted such that, as convention, T (1)D ≥ T (2)D ≥ T (3)D . R = (n̂1, n̂2, n̂3)
is the orthogonal transformation matrix, composed of the corresponding eigenvectors,
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which transforms TD to its eigensystem. According to linear algebra, Eq. (3) can also
be expressed as:

TD ⋅ n̂α = T (α)D n̂α (4)

with T (α)D and n̂α the α-eigenvalue and eigenvector of TD, respectively. The symbol
“⋅” represents the inner product of the tensor TD and the vector n̂α which leads to a
vector parallel to n̂α.

In the following, we provide a consistent decomposition for strain, stress and fabric
tensors. We choose here to describe each tensor in terms of its isotropic part (first
invariant of the tensor) and the second (J2) and third (J3) invariant of the deviatoric
tensor:

J2 = 1

2
[(T (1)D )2 + (T (2)D )2 + (T (3)D )2] (5)

J3 = det(TD) = T (1)D T
(2)
D T

(3)
D (6)

J3 can further be written as J3 = T (1)D T
(2)
D (−T (1)D − T (2)D ), since we are dealing with

deviators.

2.2 Strain

For any deformation, the isotropic part of the infinitesimal strain tensor εv (in contrast
to the true strain εv) is defined as:

εv = ε̇vdt = εxx + εyy + εzz
3

= 1

3
tr(E) = 1

3
tr(Ė)dt, (7)

where εαα= ε̇ααdt with αα = xx, yy and zz as the diagonal elements of the strain
tensor E in the Cartesian x, y, z reference system. The integral of 3εv denoted by
εv = 3 ∫ VV0

εv, is the true or logarithmic strain, i.e. the volume change of the system,
relative to the initial reference volume, V0 [GDL10].

Several definitions are available in literature [TZ06] to define the magnitude of the
deviatoric strain. Here, we use the objective definition of the deviatoric strain in terms
of its eigenvalues ε(1)d , ε(2)d and ε(3)d which is independent of the sign convention.

The deviatoric strain is then:

εdev =
¿ÁÁÁÀ(ε(1)d − ε(2)d )2 + (ε(2)d − ε(3)d )2 + (ε(3)d − ε(1)d )2

2
, (8)

where εdev ≥ 0 is the magnitude of the deviatoric strain.
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2.3 Stress

From the simulations, one can determine the stress tensor (compressive stress is posi-
tive as convention) components:

σαβ = 1

V

⎛⎝∑p∈V mpvpαv
p
β − ∑

c∈V f
c
αl
c
β

⎞⎠ , (9)

with particle p, mass mp, velocity vp, contact c, force f c and branch vector lc,
while Greek letters represent components x, y, and z [Lud05, IKML13]. The first
sum is the kinetic energy density tensor while the second involves the contact-force
dyadic product with the branch vector. Averaging, smoothing or coarse graining
[WTLB12, WHTL13] in the vicinity of the averaging volume, V , weighted accord-
ing to the vicinity is not applied in this study, since averages are taken over the total
volume.

The isotropic stress is denoted as hydrostatic pressure:

p = σv = 1

3
tr(σ) (10)

As already mentioned, we will focus on the eigenvalues of the deviatoric stress tensor
λsi = σD

i = σi − p, with the principal directions being the same for σ and σD.

The (scalar) deviatoric stress for our 3D simulations is:

σdev =
√(λs1 − λs2)2 + (λs1 − λs3)2 + (λs2 − λs3)2

2
. (11)

The deviatoric stress ratio, sdev = σdev/p, quantifies the “stress anisotropy” - where
σdev = √

3Jσ2 , with Jσ2 the second invariant of the deviatoric stress tensor and the
third stress invariant is Jσ3 = λs1λs2λs3 = λs1λs2(−λs1 − λs2).

2.4 Structural (Fabric) Anisotropy

Besides the stress of a static packing of grains, an important microscopic quantity of
interest is the fabric/structure tensor. For disordered media, the concept of a fabric
tensor naturally occurs when the system consists of an elastic network or a packing
of discrete particles. A possible expression for the components of the fabric tensor is
provided in [Lud05, MTLL04]:

F ναβ = ⟨F p⟩ = 1

V
∑
p∈V V

p
N∑
c=1n

c
αn

c
β , (12)
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where V p is the particle volume of particle p which lies inside the averaging volume
V , and nc is the normal vector pointing from the center of particle p to contact c. F ναβ
are thus the components of a symmetric rank two 3 × 3 tensor. In a large volume with
some distribution of particle radii, the relationship between the trace of fabric, volume
fraction ν and the average coordination numberC is given by 3Fv

ν ∶= F ναα = g3νC, as
first reported in [Lud07] and also confirmed from our wider friction (µ) data. The co-
ordination number C gives the average number of contacts per particels , C = Nc/Np,
while the term g3 corrects for the fact that the coordination number for different sized
particles is proportional to their surface area such that for a monodisperse packing
g3 = 1 and for a polydisperse packing g3 > 1 [GDL10, MTLL04, SMLW12].

A different formulation for the fabric tensor considers simply the orientation of con-
tacts normalized with the total number of contacts Nc, as follows [LRM12, Sat82,
Oda72]:

Fαβ = 1

Nc

N∑
c=1n

c
αn

c
β , (13)

The relationship between Eq. (12) and Eq. (13) is:

Fαβ ≅ F ναβ

g3νC
= 3F ναβ

Fv
, (14)

with the equality holding in the case of monodisperse systems.

We can define the deviatoric tensor FD and calculate the eigenvalues λfi = Fi − Fv/3
with Fv = 1, and Fi the eigenvalues of the deviatoric fabric based on Eq. (13).

We assume that the structural anisotropy in the system is quantified (completely) by
the anisotropy of fabric, i.e. the deviatoric fabric, with scalar magnitude similar to
Eqs. (8) and (11) as:

Fdev =
¿ÁÁÀ(λf1 − λf2)2 + (λf1 − λf3)2 + (λf2 − λf3)2

2
, (15)

proportional to the second invariant of FD, Fdev = √
3JF2 , where λf1 , λf2 and λf3 are

the three eigenvalues of the deviatoric fabric tensor.

Like for strain and stress, the factor 1/2 in the definition is somehow arbitrary. Since
in soil mechanics, the axial-symmetric case is often the relevant one, the factor 1/2
turns out to be convenient. In the simple case of axial symmetric deformations, the
deviatoric strain, stress and fabric definitions take into account the difference between
the eigenvalue of the main compressive (axial) direction and the average values in the
isotropic plane as follows in the exemplary case of fabric:

F ∗
dev = λf1 − λf2 + λf32

. (16)
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In all cases, the elements of the tensor have been normalized by Fv/3. Note that if
λf2 = λf3 , Eqs. (15) and (16) coincide. Analogous to equations (15) and (16), Fdev and
F ∗
dev can also be defined using the definition of fabric presented in Eq. (12).

3 Sample preparation

The preparation procedure is an essential step in any physical/numerical experiment
to obtain reproducible and reliable results, especially when friction is involved. In this
chapter, the initial configuration is such that spherical particles are generated (ran-
domly and/or systematically), with low volume fraction and rather large random ve-
locities in a 3D box, such that they have sufficient space and time to exchange places
and to randomize themselves. The packing is treated as a piece of a larger sample via
periodic boundaries, i.e. if a particle exits the simulation volume at one side, it enters
at the opposite side at a corresponding position with the same velocity; particles feel
each other across the periodic boundaries.

The initial configurations are obtained by first homogeneously compressing a granular
gas up to a volume fraction below the jamming volume fraction, i.e. where the transi-
tion from solid-like to liquid-like behavior occurs. The system is then relaxed to allow
the particles to dissipate kinetic energy and achieve a zero-pressure static configura-
tion [IKML13, KIML14, GDL10]. One possible criterion for a relaxed static state is
the ratio of kinetic to potential energy. When this ratio becomes smaller than a given
limit (10−7 in this study), the packing is said to be in a static state. This is followed
by an isotropic compression-decompression cycle up to a desired maximum volume
fraction νmax = 0.82, as depicted into Fig. 3 [IKML13, GDL10, KSM+17]. Prepara-
tion can be carried out with different deformation modes (strain or stress-control). For
instance, the system boundaries (periodic walls) can be strain-controlled to follow a
cosine-shape (to avoid shocks and inertia), as well as pressure control can be applied
to the virtual walls [IWML14]. It was observed that moving the periodic walls causes
inhomogeneity in the system. Therefore, this preparation is carried out with uniform
strain field deformation, where at every time-step all particles are moved according to
the momentary strain-rate tensor. Isotropic compression is defined by the strain-rate
tensor

Ė = ε̇v
⎡⎢⎢⎢⎢⎢⎣
−1 0 0
0 −1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎦
, (17)

where ε̇v is the strain-rate (compression > 0 and decompression < 0) amplitude applied
until the target volume fractions is achieved. ε̇v = 12.6 [µs−1] is used in this part of
the work.
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Figure 3: Evolution of volume fraction as a function of time during sample prepa-
ration: (1) A frictional granular gas is homogeneously compressed from ν = 0.3 to
ν = 0.5; and (2) relaxed at ν = 0.5; (3) the sample is compressed from ν = 0.5 to
ν = 0.82; (4) finally, the sample is decompressed from ν = 0.82 to ν = 0.5. Blue
bullets ’●’ represent the chosen configurations for further tests. The color of particles
indicates their average overlap. Large (artificial) overlaps are present in the initial ran-
dom gas (red particles), whereas in the relaxed packing (blue) particles practically do
not touch.

A short summary of the values of the parameters used for our DEM simulations is
shown in Table 1. Note that the units are artificial and can be consistently rescaled
to quantitatively match the values obtained from the experiments. Several preparation
protocols can be used to obtain equilibrated numerical samples in given stress/density/fabric
states, see e.g. [MGJS04, MLRJ+08, LRW, CR].

4 Elasticity (very small strain stiffness) in geomaterials

Many industrial and geotechnical applications that are crucial for our society involve
granular systems at small strain levels. That is the case of structures designed to be
far from failure (e.g. shallow foundations or underlying infrastructure), where strains
in the soil are small and a sound knowledge of the bulk stiffness is essential for the
realistic prediction of ground movements [Cla11].

An elastic response, in granular materials, is measured when small stress and strain
increments about a prestressed, equilibrated configuration, are related in a reversible
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Parameter Symbol Value S.I. Units

Time Unit tu 1 1 µs
Length Unit lu 1 1 mm
Mass Unit mu 1 1 µg
Number of Particles N 4096 [–]
Average radius ⟨r⟩ 1 1 mm
Polydispersity w = rmax/rmin 3 [–]
Particle density ρp 2000 2000 [kg/m3]
Normal stiffness kn 105 108 [kg/s2]
Tangential stiffness kt/kn 0.2 [–]
Rolling friction µr 0 [–]
Restitution coefficient e 0.804 [–]
Normal Viscosity γn 1000 1 [kg/s]
Friction Viscosity γt/γn 0.2 [–]
Rolling Viscosity γr/γn 0.2 [–]
Torsion Viscosity γr/γn 0.2 [–]
Background viscosity γb 100 0.1 [kg/s]

Table 1: Summary and numerical values of particle parameters used in the DEM sim-
ulations.

way, associated with an elastic potential energy. A stiffness degradation curve is nor-
mally used to explain the shear stiffness for a wide range of shear strain. Atkinson and
Sallfors (1991) categorized the strain levels into three groups, analogue to those intro-
duced in Sec. 1: the very small strain level, where the stiffness modulus is constant;
the small strain level, where the stiffness modulus varies non-linearly with the strain;
and the large strain level, where the soil is close to failure and the soil stiffness is
relatively small. This explanation was illustrated using the normalized stiffness degra-
dation curve by comparing with the ground response from geo-technical construction
and the measurement accuracy from laboratory investigation [AS91, Mai93] as shown
in Fig. 4.

An elastic response is only observed for very small strain (order of 10−6 or 10−5) in-
tervals, and should in fact be viewed as an approximation, as dissipation mechanisms
are always present (in particular, particle friction) and preclude the general definition
of an elastic energy. The relative amount of dissipation decreases as the size of the
probed strain interval approaches zero. For that reason, the material behavior is best
characterized as“quasielastic” in that limited range [Cla11, Bur89]. In such limited
regime, elastic moduli may then be measured either statically, with adequate devices
apt to capture very small strains, or deduced from propagation of sound wave veloci-
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Figure 4: Typical representation of stiffness variation as a function of the shear strain
amplitudes; comparison with the ranges for typical geo-technical problems and differ-
ent tests [AS91, Mai93].

ties.

The aim of this section is to briefly introduce the most common experimental tech-
niques used to measure the very small strain stiffness, and further explain how to study
the granular stiffness via DEM simulations. Particular attention is devoted to the de-
pendence of elastic moduli on the stress state, since this is an important controllable
experimental parameter, and on fabric that can be inferred via DEM.

4.1 Experimental measurements of small-strain stiffness

Estimation of stiffness has traditionally been made in a triaxial apparatus using precise
displacement transducers or resonant column devices. In recent years, several meth-
ods become commercially available to determine the stiffness of geomaterials both
in the laboratory and in the field [Cla11, Bur89]. The laboratory tests are classified
as dynamic or static, as described in Table 2. Dynamic testing occurs at a strain rate
high enough to initialize an inertial effect within the specimen, whereas static testing
occurs at a much lower repetition rate at which inertial effects are obsolete.

Type of test Strain (%)
Static Triaxial (TX) > 0.0001

Dynamic
Resonant column (RC) 0.00001 - 0.01
Bender element (BE) < 0.001
Ultrasonic transducer (UT) < 0.0001

Table 2: List of experiments classified as static or dynamic and their strain regimes.
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4.1.1 Dynamic methods

Wave propagation

The use of wave propagation to describe the small strain stiffness of a granular mate-
rial has been a well documented, widely-used technique, as evidenced in the literature.
Velocity testing, which includes BE (Bender Elements) and UT (Ultrasonic Transduc-
ers) technology, has been gaining popularity due to its relative ease of implementation.
The instrumentation consists of a pair of piezoelectric transducers, function generator,
signal amplifier, voltage divider for the input signals and digital oscilloscope. Usually
transducers are installed at the top and bottom of a triaxial or oedometric cell. This
allows to probe the stiffness of the soil along a given stress path [Saw12]. Fig. 5 shows
a schematic drawing of the setup and peripheral electronics [TSML17]. The transmit-
ting transducer sends the input electric signal through the medium and the receiving
transducer receives the propagated signal. An image of Bender Element is shown in
Fig. 6. See Refs. [LS05, GYH13] for technical details on the transducers.

Figure 5: Schematic drawing of an experimental setup of wave propagation testing
[TSML17].
Knowing the distance between the two elements, and observing the time required for
the shear wave to propagate, a value of the shear wave velocity can be obtained. From
this point only the specimen dimensions and soil bulk density are required to produce
a stiffness estimate.

The signal-to-noise ratio is improved by repetitive averaging of sufficient number of
detected signals using the digital oscilloscope and then sent to a computer for fur-
ther processing. Concerning the travel time and distance, necessary to calculate the
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Figure 6: Bender elements used in the experimental tests.

wave velocity, the determination of travel distance (distance between transducers) is
generally considered less problematic of the two [VA95, LS05, SL17a, SL17b].

The determination of the travel time, on the other hand, is more controversial. A
typical signal gathered from an impulse input signal is presented in Fig. 7, with the
amplitude normalized by the maximum amplitude recorded. Suggested criteria and
recommendations vary depending on installation, application and input signal. The
first arrival method calculates the time difference between the first peak in the trans-
mitted signal (A) and the first deflection observed in the output signal (B). The peak-
peak method takes the time between the first (A) peak in the input signal and the first
(C) and/or second (D) in the received signal. The most common methodology is to
interpret the received signal in the time domain, and to consider peak-peak time or the
first arrival methods [LS05, JCV99].

By measuring the travel time (t) and the tip-to-tip distance between transmitting and
receiving transducers (L), the wave velocity in the specimen (V ) is obtained as:

V = L

t
(18)

The longitudinal velocity Vp and the shear velocity Vs can be measured by using
P-wave or S-wave transducers respectively. In the long-wavelength limit, the longitu-
dinal, P-wave modulus M is related to the P-wave velocity Vp in the medium by

M = ρbulkV
2
p , (19)

where ρbulk is the bulk density of the sample, which is, in turn, related to volume
fraction ν and particle density ρp as:

ρbulk = νρp. (20)
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Figure 7: Typical input and output signals from the transmitting and receiving piezo-
electric transducers.

Similarly, the small-strain shear modulus G = Gmax is determined from the measured
S-wave velocity Vs as:

G = ρbulkV
2
s . (21)

Resonant column test

A typical fixed-free, torsional device is shown in Fig. 8. A cylindrical soil specimen
is confined between two flat ends. The bottom end is often fixed and the top end is
capable of exciting the specimen by torsional or longitudinal vibration. The vibra-
tion is applied using an electromagnetic drive system with variable frequency. One of
the important advantages of RC testing is that measurements can be performed in the
small strain range, similarly to the wave propagation tests, just as done in field seismic
testing (see Table 2).
The test starts by vibrating the cylindrical soil specimen at the top end. The fre-
quency of vibration is gradually increased until reaching the first-mode fundamental
frequency of the sample. At this frequency, measurements are made of the resonance
frequency, amplitude of vibration and damping. Knowing the geometry and the end
constraints of the sample, the measured resonance frequency is then used to calcu-
late the shear wave propagation velocity. The shear modulus is then obtained directly
from the derived velocity and the density of the sample, Eq. (21). By applying the
same procedure at different frequency levels, the strain-dependent modulus (degrada-
tion curve) can be obtained. In addition to the shear modulus, the RC test offers the
possibility to measure the damping ratio that is (usually) not accessible via piezoelec-
tric transducers.
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Figure 8: Simplified Diagram of a Fixed-Free, Torsional Resonant Column [SS+00]

4.1.2 Static methods

Though the use of wave propagation has become a prevalent technique, so-called static
tests are still commonly used to estimate soil stiffness since they allow measurments of
the moduli, while determining other paramters such as shear strength or friction angle.
In this case, the stiffness is determined by measuring the stress and strain associated
with deformations in conventional element tests apparatus. The most typical static
measurements are made in triaxial cells [JJSW08, COO07].

The hardship faced with this method of obtaining stiffness parameters of soil is the
need to mount on-specimen measurement devices that can monitor the deformations
occurring without incurring deformations themselves. Devices include high-resolution
miniature LVDT’s (Linear Variable Differential Transformers), proximity sensors, and
local deformation transducers. Such specimen measurement techniques are vital in
order to remain in the small strain measurement region since off-specimen forms of
measurements cannot reach nearly as high resolutions of less than 0.05% strain. De-
pending on the device (triaxial, true-triaxial, hollow cell) and the LVDT’s adopted,
several material moduli can be measured.
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4.2 DEM simulation of small-strain stiffness

In this section, we show how to use DEM simulations to study the elastic behavior of
granular materials. Both dynamic and static experiments, as described above, can be
reproduced via DEM.

4.2.1 Dynamic method (wave propagation)

For the sake of simplicity, the dynamical wave propagation DEM experiment is il-
lustrated for the case of a monodisperse, structured packing. This section is mainly
reporting results from [MML06]. A Face Centered Cubic (FCC) square-layers in the
x-y-plane are stacked on top of each other (in z-direction), such that each layer fits into
the holes of the one below, and each second layer is just a z-shifted copy of the origi-
nal. The distance between square layers is l0 = d/√2 for a particle diameter d. Fig. 9
shows the regular packing where square layers in the x-y-plane (4 × 4) are stacked in
the z-direction (200 layers). Based on a particle-centred square in the first layer, a unit-
cell (cuboid) therefore has a volume Vu = √

2d3 and contains 2 particles with volume
2Vp = (π/3)d3 such that the volume fraction is ν = 2Vp/Vu = π/(3√2) ≈ 0.74. Each
particle has four contacts inside each square-layer, and eight with particles in both
neighbouring layers, corresponding to a coordination number C = 12. This structure
will not change in the simulations described below, i.e. the case of small amplitude
perturbations is considered. Note that the packing is translationally invariant in the x-
and y-directions, but different in the z-direction, hence it is an anisotropic system (see
Fig. 9).

Figure 9: Snapshot of a typical face centred cuboid packing from [LM07].

The typical packing used is long in the z-direction (200l0 with l0 the distance between
layers), which allows to study the wave for a long time and large distances. lx = ly =
4d was used in x and y directions. Details of the numerical parameters used are given
in [MML06, LM07].
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While creating the regular structure, the position of particles is chosen such that the
overlap is the same at all contacts in the system, hence allowing for an isotropic stress,
σ0
xx = σ0

yy = σ0
zz despite the anisotropic structure. The contact overlaps are chosen

much smaller than the particle diameter, δ/d ≈ 10−3. Being the packing regular and
homogeneous, the system is in a static equilibrium.

Waves are excited by applying a small perturbation at one side of the system, i.e. by
shifting a layer of particles. Compressive (P) and shear (S) modes can be triggered
by directing the perturbation parallel or perpendicular to the wave propagation direc-
tion, respectively. More specifically, a x − y-layer is shifted by ∆z/d = 10−4. This
displacement amplitude, ∆z, that excites the wave is still small as compared to the
typical overlap ∆z/δ = 10−1.

The traveling plane wave can be observed in various quantities like stress, displace-
ment, kinetic energy, etc. Since the system is made of layers, it is possible to “record”
the pulse at each layer as a function of time. As an example, Fig. 10 shows the output
of a numerical experiment where a plane compressive P-wave is created and prop-
agates in z-direction. The scaled normal stress is plotted versus time at different
positions along z−direction. The figure resembles the travel of the wave as seen in
experiments (Fig. 7). By looking at the behavior of stress over time in a given layer,
it is possible to detect the arrival time with the methods described, e.g. first arrival,
or peak-to-peak. Since the distance between the source layer and the arrival layer
is known, the velocity can then be calculated by Eq. (18). With increasing distance
from the excited “source” layer the particles experience an increase in stress (signal
arrival) with a time delay and also with smaller amplitude and a slower rate of change
[OOtW15].

It is important to note here that, as consequence of the use of periodic boundaries,
two opposite ends of the system are connected, and a tensile wave would travel in the
direction opposite to the compressive pulse. These waves will interfere after having
travelled half of the system. In order to avoid this, and to maximize the distance that
can be traveled by a pulse, two layers of particles at the opposite ends of the system
are fixed, the other two directions remain periodic. This avoids the tensile pulse, but
not boundary reflections that lead to an oscillating signal, traveling after the primary
pulse, see Fig. 10.

4.2.2 Static method (infinitesimal strain)

In this section we use Discrete Element simulations to reproduce static experiments
for the characterization of the elastic stiffness of granular packings. In order to inves-
tigate the elastic response, we perform so-called strain probing tests in several points
along the isotropic preparation (pre-strain) path [KLM14] shown in Fig. 3 (red dotted
points).

Since isotropic samples are considered, only two independent moduli are needed to
characterize the bulk material. The elastic constants B (bulk modulus) and G (shear
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Figure 10: Normal stress (σzz) scaled by the equilibrium stress (σ0
zz) as function of

time at different positions z/l0 = 10, 80, and 150, with the distance from the source,
z, and the layer distance l0 [MML06].

modulus) are chosen here. The other moduli can be obtained from these two via the
classical solid mechanics relations.

After applying sufficient relaxation (see Sec. 3 and Ref. [CR]), incremental pure volu-
metric or pure deviatoric strains are applied to the samples, in order to obtain the bulk
and shear moduli, respectively [MLRJ+08, KLM14, CVT03, MGJS04]. Since we ap-
ply infinitesimal strain perturbations, we do not expect contact opening or closing to
occur. However, the friction coefficient is set infinity (µ = ∞) to prevent any sliding
at contacts during probing. For each calculation, we verify that the applied strain is
small enough to be in the linear response regime, i.e. the elastic moduli are constant
with strain amplitude.

After probing the configurations, the effective scaled, non-dimensional elastic moduli
of the granular assembly are obtained as the ratio between the measured increment in
stress and the applied strain:

B∗ = δP ∗/3δεvol and G∗
xy = δ (σ∗xx − σ∗yy)/δ (εxx − εyy) (22)

where P ∗ = Pd/kn and σ∗ = σd/kn are the non-dimensional pressure and stress
respectively.

We scan a wide range of inter-particle friction coefficients and volume fractions, in
order to understand how the interplay of contact/particle properties and system prepa-
ration affect the microstructure and thus the elastic moduli. The same procedure is
applied for samples created with different values of contact friction, µ = 0 − 10. So
that, packings at the same density achieve different pressure and microstructure.

As an example, the variation of the bulk and shear moduli with applied strain am-
plitude is shown in Fig. 11 for µ = 0.001 for different volume fractions. The elastic
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moduli stay practically constant for small amplitudes (3δεvol and δεdev < 10−4 with
very slow rate ≈ 10−5) and this can be considered as the elastic regime. By increasing
the amplitudes of the perturbation, B∗ and G∗ start to increase and decrease non-
linearly, respectively, i.e. packings are no longer in the elastic regime. The elastic
regime becomes larger for higher volume fraction (see Fig. 11) and higher friction
(data not shown here).
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Figure 11: Evolution of dimensionless (a) bulk modulus B∗ and (b) shear modulus
G∗ with the respective applied isotropic 3δεvol and shear δεxy strain amplitudes for
different states at different volume fractions ν = 0.66,0.69,0.75 and 0.82, for samples
with friction coefficient of µ = 0.001. Corresponding lines represents the small strain
elastic limit values of B∗ and G∗.

In Fig. 12, we plot the variation of the bulk B∗ and shear G∗ modulus, with volume
fraction for packings with different coefficients of friction µ. As expected, the elastic
moduli always increases with increasing density. However, the increase of the moduli
is slower for packings with high friction. We can relate this behavior to a lower average
number of contacts (i.e. lower fabric Fv) for samples prepared with strong friction at
the same volume fraction. The value of the initial fabric is proportional to the number
of contacts, and influences the subsequent evolution of the moduli.

When the elastic moduli are plotted against the isotropic fabric Fv in Fig. 13, the
data for the bulk modulus approximately collapse in a unique scaling law, implying
a general relation between bulk stiffness and isotropic micro-structure. On the other
hand, no scaling is found for the shear modulusG∗

xy , even if data follow a similar trend
with ν. Further investigations are needed. It is worth mentioning that the coefficient
of friction has no direct influence on the elastic moduli but rather it effects B∗ and
G∗ indirectly through the preparation that leads to a different state variable Fv . In
fact, friction is set to infinity during the probing to prevent actual sliding of contacts.
The tangential component of the force contributes to the overall shear stiffness G∗ in
a similar way for all samples as kt is identical for all cases involving µ ≠ 0, while the
Coulomb threshold, i.e. sliding, is never reached.
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Figure 12: Evolution of the normalized (a) bulk modulus B∗ and (b) shear modulus
G∗
xy with volume fraction ν for different coefficients of friction, µ, as shown in the

legend.
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Figure 13: Evolution of the normalized (a) bulk modulus B∗ and (b) shear modulus
G∗
xy with volume fraction ν for different coefficients of friction, µ, as shown in the

legend.

4.2.3 Moduli via the stiffness matrix

For the sake of completeness, we want to mention here a method for the numerical
characterization of elasticity in granular materials based on the instantaneous con-
tact network. In simulations, an elastic model is considered for well-equilibrated
configurations, in which the contact structure behaves just like a network of linear
elastic springs. One may then build the stiffness matrix (also known as the “dy-
namical matrix”) for this network, with stiffness parameters kn and kt as detailed in
[AR07, ML17, KR01]. The elastic moduli are then obtained by solving an appropri-
ate system of linear equations, for the small (linear and angular) displacements of all
the grains associated with global strains and stresses. We refer to [KRP+17a, AR07]
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and to the companion paper [KRP+17b] for details about the stiffness matrix and its
treatment.

5 Element tests for small and intermediate strain

Laboratory testing of soils is a fundamental element of geotechnical engineering. The
complexity of testing required for a particular project may range from a simple mois-
ture content determination to specialized strength testing. The purpose of laboratory
testing is to reproduce in-situ soil loading under controlled boundary conditions. Soils
existing at a depth below the ground surface are affected by the weight of the soil
above. The influence of this weight, known generally as the overburden stress, causes
a state of stress to exist which is unique at that depth for that soil. When a soil sample
is removed from the ground, that state of stress is relieved as all confinement of the
sample has been removed. In testing, it is important to reestablish the in-situ stress
conditions and to study changes in soil properties when additional stresses represent-
ing the expected design loading are applied.

The soil loading test apparatus commonly used to determine strength and stiffness
parameters for routine designs are oedometers, triaxial cells and direct shear testers.
Each one of them applies stress and strain to the sample in different configurations.
The essential features of soil behavior during loading and unloading can be seen in
typical stress-strain curves. In the following section 5.1 the most common soil testing
devices are shown and explained. In section 5.2 the same element tests are simulated
and analyzed via DEM.

5.1 Experimental tests

5.1.1 Oedometer test

The oedometer test is classical in soil mechanics for obtaining parameters for calcula-
tion of consolidation settlements and for assessing the stress history of soils. The test
specimen is in the form of a disc of soil, held inside a metal ring and lying between
two porous stones. The upper porous stone, which can move inside the ring with a
small clearance, is fixed below a metal loading cap through which pressure can be ap-
plied to the specimen. The whole assembly sits in an open cell of water to which the
pore water in the specimen has free access. The confining ring imposes a condition of
zero lateral strain on the specimen. The compression of the specimen under pressure
is measured by means of a dial gauge or electronic displacement transducer operating
on the loading cap [KC12]. The initial pressure applied depends on the type of soil.
Following this, a sequence of pressure increments is applied to the specimen. Fig. 14
shows the schematic diagram of an oedometer cell.
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Figure 14: Schematic diagram of an oedometer cell.

5.1.2 Tri-axial test

Triaxial tests provide a reliable means to determine the friction angle of natural clays
and silts, as well as reconstituted sands in drained or undrained conditions. The stiff-
ness at intermediate to large strains can also be evaluated. This test is able to repro-
duce at the lab the initial effective stresses and stress changes, in a very realistic way
[Bar97]. The triaxial test set-up is shown in Fig. 15. The sample is enclosed by a
thin rubber membrane and placed inside a plastic cylindrical chamber that is usually
filled with water or glycerine. The sample is subjected to a total confining pressure by
the fluid in the chamber acting on the membrane. A back pressure is applied directly
to the specimen through a port in the bottom pedestal. Thus, the sample is initially
consolidated with an effective confining stress. To cause shear failure in the sample,
axial stress is applied through a vertical loading ram. The axial load applied by the
loading ram corresponding to a given axial deformation is measured by a proving ring
or electronic load cell, the deflections of which are monitored by either indicators,
LVDTs or DCDTs.

5.1.3 Direct shear test

The direct shear (DS) test is performed by placing a specimen into a cylindrical or
square-shaped shear box which is split in the horizontal plane [WB13]. A vertical
(normal) load is applied over the specimen that is allowed to consolidate. While either
the upper or lower part of the box is held stationary, a horizontal load is exerted on
the other part of the box in an effort to shear the specimen on a predefined horizontal
plane. A diagram of the apparatus and the shearing action is demonstrated in Fig. 16.
The DS is the oldest and simplest form of shear test arrangement. It is routinely used
to calculate the yield locus (macroscopic friction and cohesion) of soils. It has several
inherent shortcomings due to the forced plane of shearing:

• The failure plane is predefined and horizontal; this plane may not be the weak-
est, which would be more relevant for design.
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Figure 15: Schematic diagram of a triaxial test apparatus [TTC+12].

• Unlike in the triaxial test, there is little control over the drainage or saturation
of the soil.

• The stress conditions across the soil sample are very complex. The distribution
of normal stresses and shearing stresses over the sliding surface is not uniform;
typically the edges experience more stress than the center. Due to this, there is
progressive localized failure of the specimen, i.e. the entire strength of the soil
is not mobilized simultaneously [WB13].

Despite of these shortcomings, the direct shear test is commonly used as it is sim-
ple and easy to perform in both soil mechanics and powder technology communities.
The device uses much less soil than a standard triaxial device, therefore consolida-
tion times are shorter. The DS provides reasonably reliable values for the effective
strength parameters. Repeated cycles of shearing along the same direction provide an
evaluation of the residual strength parameters.
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Figure 16: Schematic diagram of direct shear test.

5.2 Numerical tests

Element tests are (ideally homogeneous) macroscopic tests in which one can control
the stress and/or strain path. Such macroscopic experiments are important to study
the elasto-plastic (pre-failure) behavior of soils, for calibrating and developing con-
stitutive relations, but they provide little information on the microscopic origin of
the bulk strength and flow behavior. A complementary approach involves simulating
these experiments via the Discrete Element Method (DEM), since it provides infor-
mation about the micro-structure beyond what is experimentally accessible, see e.g.
Refs. [TZ06, IKML13, Tho00, Tho10] among others. In the following, we will show
examples of DEM simulations of simple element tests. Note that the numerical pa-
rameters as given in Table 1 are used here and samples prepared in Sec. 3 are used as
initial configurations.

5.2.1 Uniaxial test (oedometer)

Results in this section are mainly taken by [IKML13]. One element test which can
easily be realized (experimentally as well as numerically) is uniaxial compression (in
a cylindrical or box geometry) involving an axial deformation of a bulk sample while
the lateral boundaries of the system are fixed. Uniaxial compression is achieved by
moving the particles in the z-direction according to a prescribed strain rate, with a
diagonal strain-rate tensor

Ė = ε̇u ⎛⎜⎝
0 0 0
0 0 0
0 0 −1

⎞⎟⎠ ,
where ε̇u is the strain-rate (compression > 0 and decompression/tension < 0) ampli-
tude applied in the uniaxial mode. The negative sign (convention) of Ėzz corresponds
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to a reduction of length, so that tensile deformation is positive. During loading (com-
pression) the volume fraction increases from ν0 to a maximum νmax = 0.820. Even
though the strain is imposed only on one mobile periodic wall with normal in the z-
direction, which leads to an increase of compressive stress during compression, also
the non-mobile x and y walls experience some stress increase as expected for “solid”
materials with non-zero Poisson ratio. We next will discuss the influence of friction
on the evolution of stress and structural anisotropy as functions of deviatoric strain
during uniaxial loading. Under uniaxial compression, not only does stress builds up,
but also the anisotropy of the contact and force networks develops, as it relates to the
creation and destruction of new contacts [IKML13].

The deviatoric stress ratio, sdev = σdev/P = σ∗dev/P ∗ is shown in Figs. 17(a) for a
frictionless (µ = 0) and several frictional (µ = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5 and
1.0) systems during uniaxial loading. As the deviatoric strain applied to the system is
increased during uniaxial loading, the deviatoric stress ratio initially grows for all the
friction coefficients shown. In some cases (for small µ), the maximal sdev is reached
before the maximum deviatoric strain applied (εmax

dev =0.1549) is reached. For some
of the configurations studied, a steady state is observed in which further application
of deviatoric strain does not lead to visible further increase/decrease in the deviatoric
stress. At the maximum applied deviatoric strain, we observe that not all configura-
tions (especially the highest friction coefficients) have reached steady state. For the
systems with lower microscopic friction coefficients, a slight decrease of the devia-
toric stress ratio for larger deviatoric strains is seen. The slope of the deviatoric stress
ratio, which represents its growth rate shows a decreasing trend with increasing fric-
tion. We recall here that the initial packings are different since they are prepared with
different friction coefficients at the same volume (packing fraction). Due to this, the
pressure increases with increasing friction while the coordination number decreases
with friction. The slope of the deviatoric stress ratio in Fig. 17(a), related to the initial
scaled shear stiffness of the isotropic packing is at the same time dependent on these
two quantities [MLRJ+08, Wal87].

Along with the deviatoric stress ratio, for a characterization of the contact network of
the particles, we plot the deviatoric fabric magnitudes Fdev of the systems discussed
above as function of the deviatoric strain during uniaxial loading in Fig. 17(b). The
deviatoric fabric magnitude builds up from different (random, but small) initial values
and reaches different maxima within the same range of deviatoric strains (εdev ≈ 4 −
6%). For larger strains, we observe a decrease in the structural anisotropy.

Interestingly, for systems with higher friction coefficients (µ = 0.3, 0.5 and 1.0), after
the decrease in the structural anisotropy, further loading in the axial direction leads
to a (small) second increase of the deviatoric fabric until, at maximum compression,
the deviatoric fabric again reaches a local maximum. This indicates that more con-
tacts are created in the axial compressive direction compared to the horizontal plane
at the beginning of the loading cycle. At the first maximum (εdev ≈ 0.06), the material
behavior changes such that the number of contacts created in the horizontal plane be-
comes higher with respect to the vertical plane. This trend reverses again as maximum

154 DEM applied to soil mechanics

ALERT Doctoral School 2017



compression is reached for systems with higher friction coefficients.

(a) (b)

Figure 17: (a) Deviatoric stress ratio plotted as function of deviatoric strain during
uniaxial loading, (b) corresponding plots of the deviatoric fabric, for different micro-
scopic friction coefficients [IWML14].

5.2.2 Triaxial test

Starting from frictionless and frictional samples (µ = 0,0.1 and 0.5) prepared in Sec. 3,
configurations with identical pressure level P ∗ = 0.004 are taken and relaxed to dissi-
pate their kinetic energy. Note that due to friction, the initial volume fractions of these
configurations are different (decreasing with µ), even though the pressure is identical.

After relaxation, triaxial loading is initiated. This is achieved by moving the peri-
odic wall in the axial z-direction according to a half-cosinusoidal strain path while
maintaining constant pressure on the other two periodic walls. In addition to the three
friction coefficients considered, the sample prepared with µ = 0 is also compressed
under triaxial load by using different finite friction coefficients, i.e. µ = 0.1 or 0.5.
This creates loose (µ ≠ 0 during preparation) and dense (µ = 0 during preparation)
initial samples (see also Ref. [CR]), where all the samples have same pressure P ∗ =
0.004.

We perform monotonic triaxial tests until the failure point is reached. This is identified
as the maximum axial stress reached before stress reduction (or softening) begins. The
evolution of volume fraction during the triaxial test for all cases is shown in Fig. 18(a).
The symbols represent data where friction is inactive during the preparation stage
(dense states) while the solid lines represent data where friction is active (loose states).
Several observations can be made from the figure. First, the volume fraction appears to
remain fairly constant at ν = 0.67 for the frictionless (µ = 0) data. Second, for initially
dense samples (dotted lines), the volume fraction decreases during monotonic loading
(dilatancy), whereas for initially loose samples, it increases (contractancy).

In Fig. 18(b), we plot the evolution of the scaled deviatoric stress σdev as function of
the axial strain ε1 for different preparation procedures. To further probe into the var-
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ious configurations and obtain information about their microstructure, in Fig. 18(c),
we also plot the corresponding evolution of the deviatoric fabric as function of the
deviatoric strain. The first plot (Fig.18(a)) shows that DEM is nicely able to qualita-
tively capture the shear behavior of soils. The first samples first reach a peak and then
soften toward a critical state, where the material can be further sheared at constant
deviatoric stress and volume (Fig.18(a)) and (b)) while loose samples monotonically
reach the critical state. For both loose and dense samples, higher interparticle friction
means higher strength. When looking at the fabric (Fig. 18(c)), we observe a similar
behavior as shear stress. However, peak and critical state are delayed (in strain) with
respect to stress. This behavior suggests that contact forces adapt to shear strain faster
than the contact network. See also Ref. [Tho00] for DEM simulations of triaxial tests
of soils.
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Figure 18: Evolution of (a) volume fraction (b) deviatoric stress and (c) deviatoric
fabric with axial strain for different inter-particle friction. Symbols represent data
where friction is off during preparation while the solid lines are for tests where friction
is on during sample preparation.
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5.2.3 Shear cell

After choosing the initial configurations from the loading branch of the preparation
path (see Fig. 3 in Sec. 3), we perform pure shear and simple shear tests on each
initial configuration. These two element tests are somehow different with respect to
the shear cell test in Sec. 5.1.3. In fact, they are homogeneous tests in a periodic 3D
box, and can be interpreted as material points in the middle of the direct shear cell
experiment (where the shear band develops) [SPO+17].

Pure shear (volume conserving): We perform volume conserving pure shear by ap-
plying the following strain-rate tensor to our periodic sample:

Ė = ε̇D ⎛⎜⎝
1 0 0
0 −1 0
0 0 0

⎞⎟⎠ ,
where ε̇D is the strain-rate (compression > 0) amplitude applied to the wall.

Simple shear: Simple shear is another test which can be performed using DEM. In this
case the samples are in cuboid volume with periodic boundaries in x-z-directions and
Lees-Edwards [LE72] periodic boundaries in y-direction, see Fig. 19(b). The particles
are sheared along the x-direction and the stress is kept constant along the y-direction,
σyy = constant.

Figure 19: Simulation of a 3D system of polydisperse particles under y-normal stress
controlled simple shear with Lees-Edwards periodic boundaries.
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The shear movement of particles is achieved by moving the particles in the x-direction
according to a prescribed constant shear strain-rate tensor:

Ė = γ̇ ⎛⎜⎝
0 1 0
1 0 0
0 0 0

⎞⎟⎠ ,
where, the shear rate is γ̇ = ∂Vx/2∂y, and Vx is the shear velocity in the x-direction,
kept constant. The vertical stress is adapted by the motion of all particles in order to
increase or decrease the stress towards its desired value. The periodic boundaries are
also adjusted at each time step.

We start by choosing two configurations, frictionless and frictional (µ = 0.5), at the
same confining pressure. It is clear that samples with different friction coefficients at
the same confining pressure show different volume fraction. Volume fractions of fric-
tionless and frictional samples are ν = 0.7 and 0.65 respectively. We then apply simple
shear deformation with a constant axial stress along the y-axis (σ∗yy = 0.02). We con-
tinue shearing the samples until they reach the steady state. Volume fractions of the
two samples are now ν = 0.7 and ν = 0.63 for the frictionless and frictional samples
respectively. At this point, we pick up two new configurations from the frictionless
and frictional preparation paths that have those volume fraction values. Finally, these
two new samples are sheared under pure shear (constant volume) until they reach their
steady state.

Now, we want to compare the behavior of the material under pure shear and simple
shear deformation. The samples sheared before they have same volume fractions in the
critical state. In Fig. 20, we plot the evolution of volume fraction ν, deviatoric stress
σ∗dev and fabric Fdev versus shear strain. As prescribed, both frictionless and fric-
tional samples show the same volume fraction at steady state (Fig. 20(a)). However,
by looking at Fig. 20(b) and 20(c), we can see differences between the frictionless and
frictional cases. The deviatoric stress and fabric evolve differently between the two
shear modes, as the rise is faster in the simple shear case than in the pure shear case.
But, this pronounced difference is not observed in the frictionless samples where the
behavior under two modes nicely coincides. This element test comparison reveals the
importance of choosing the right input parameters for DEM and and the right prepara-
tion procedure/conditions [CR]. An interesting comparison between real experiments
and simulations in a direct shear cell is reported in Ref. [TZ06].

5.2.4 Large strain and onset of flow

Finally in this section, we use data from simple shear numerical tests in the previous
section to briefly introduce failure and flow. The shearing strength of a soil sample is
generally defined as its maximum resistance to shearing forces. Plotting the peak and
residual shear stress values versus applied normal stress (extracted from Fig. 20) for
frictionless and frictional samples analyzed in section 5.2.3 under simple shear, results
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Figure 20: (a) Volume fraction ν, (b) dimensionless shear stress σ∗dev = σdevd/k1
and (c) deviatoric fabric Fdev , plotted against deviatoric strain εdev . Two different
values of shear control conditions are given in the legend. Different colors represent
frictionless and frictional shearing as given in the inset.

in the four lines in Fig. 21. These lines define the Mohr-Coulomb yield (failure) loci
for our granular material, as they give the maximum shear stress σ∗dev that the material
can sustain for each applied pressure P ∗. For the sake of simplicity, these loci are
often approximated with linear functions:

σ∗dev = P ∗ tanφ + c (23)

where c is the cohesive strength (c ≅ 0 for cohesionless soils) and φ is the angle of
internal friction. In the case of the residual strength, the cohesion c drops to zero
and the angle of residual strength φr fully characterizes the material in this phase
[ASC17]. When the yield surface is reached, the granular material fails and starts to
flow. The flow behavior after failure belongs to the domain of granular rheology, see
Ref. [LRW] for more details.
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Figure 21: Peak and residual shear strength at different normal stresses obtained for
frictionless and frictional (cohesionless c = 0) samples by a simple shear test.

6 Summary and conclusion

In this chapter, we have described how to use particle simulations [LRW, Rad] to re-
produce laboratory tests, typically used in soil mechanics to infer stiffness and strength
characteristics of soils, see also Refs. [CR, DS]. We have looked at different strain
regimes, from elasticity at very small strains, via small and intermediate strains where
non-linearity is predominant, up to shear failure at large strain.

Each section started by a brief review of different testing devices in geo-mechanics
labs for soil characterization in a specific regime. Then, individual element tests were
simulated using DEM and results were described and interpreted. Dynamic and static
methods for the determination of the elastic moduli of a granular material were used
in the very small strain regime, while oedometric (uni-axial) compression/tension,
triaxial and direct shear tests were applied in the case of intermediate and large strains.

Results show that DEM is a powerful tool to investigate laboratory-scale models, able
to complement the macroscopic informations available by physical testing with mi-
croscale insights, paving the way to new micro-mechanical based constitutive models
for field scale applications in soil mechanics.
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Comptes Rendus Mécanique, 338(10-11):570–586, 2010.

[GL13] F. Göncü and S. Luding. Effect of particle friction and polydispersity
on the macroscopic stress–strain relations of granular materials. Acta
geotechnica, 8(6):629–643, 2013.

[God90] J.D. Goddard. Nonlinear elasticity and pressure-dependent wave speeds
in granular media. Proceedings of the Royal Society of London A: Mathe-
matical, Physical and Engineering Sciences, 430(1878):105–131, 1990.

[GYH13] X. Gu, J. Yang, and M. Huang. Laboratory measurements of small
strain properties of dry sands by bender element. Soils and Foundations,
53(5):735–745, 2013.

[IKML13] O.I. Imole, N. Kumar, V. Magnanimo, and S. Luding. Hydrostatic and
shear behavior of frictionless granular assemblies under different de-
formation conditions. KONA Powder and Particle Journal, 30:84–108,
2013.

[IWML14] O.I. Imole, M. Wojtkowski, V. Magnanimo, and S. Luding. Micro-macro
correlations and anisotropy in granular assemblies under uniaxial loading
and unloading. Physical Review E, 89(4):042210, 2014.

[JCV99] X. Jia, C. Caroli, and B. Velicky. Ultrasound propagation in externally
stressed granular media. Physical Review Letters, 82(9):1863, 1999.

[JJSW08] F. Jafarzadeh, H. Javaheri, T. Sadek, and D.M. Wood. Simulation of
anisotropic deviatoric response of hostun sand in true triaxial tests. Com-
puters and Geotechnics, 35(5):703–718, 2008.

[JS06] S. Ji and H.H. Shen. Effect of contact force models on granular flow
dynamics. Journal of engineering mechanics, 132(11):1252–1259, 2006.

[KC12] J.A. Knappett and R.F. Craig. Craig’s soil mechanics. 2012.

162 DEM applied to soil mechanics

ALERT Doctoral School 2017



[KIML14] N. Kumar, O.I. Imole, V. Magnanimo, and S. Luding. Effects of polydis-
persity on the micro–macro behavior of granular assemblies under dif-
ferent deformation paths. Particuology, 12:64–79, 2014.

[KLM14] N. Kumar, S. Luding, and V. Magnanimo. Macroscopic model
with anisotropy based on micro–macro information. Acta Mechanica,
225(8):2319–2343, 2014.

[KR01] N.P. Kruyt and L. Rothenburg. Statistics of the elastic behaviour of
granular materials. International Journal of Solids and Structures,
38(28):4879–4899, 2001.

[KRP+17a] M.H. Khalili, J.-N. Roux, J.M. Pereira, S. Brisard, and M. Bornert. Nu-
merical study of one-dimensional compression of granular materials. i.
stress-strain behavior, microstructure, and irreversibility. Physical Re-
view E, 95(3):032907, 2017.

[KRP+17b] M.H. Khalili, J.-N. Roux, J.M. Pereira, S. Brisard, and M. Bornert.
Numerical study of one-dimensional compression of granular materi-
als. ii. elastic moduli, stresses, and microstructure. Physical Review E,
95(3):032908, 2017.

[KSM+17] R. Kievitsbosch, H. Smit, V. Magnanimo, S. Luding, and K. Taghizadeh.
Influence of dry cohesion on the micro- and macro-mechanical properties
of dense polydisperse powders & grains. EPJ Web Conf., 140:08016,
2017.

[LE72] A.W. Lees and S.F. Edwards. The computer study of transport processes
under extreme conditions. Journal of Physics C: Solid State Physics,
5(15):1921, 1972.

[LM07] S. Luding and O. Mouraille. Mechanic waves in sand: effect of polydis-
persity. Partec, 2007.

[LRM12] L. La Ragione and V. Magnanimo. Contact anisotropy and coordina-
tion number for a granular assembly: A comparison of distinct-element-
method simulations and theory. Physical Review E, 85(3):031304, 2012.

[LRW] S. Luding, N. Rivas, and T. Weinhart. From soft and hard particle sim-
ulations to continuum theory for granular flows. ALERT geomaterials
Doctoral School 2017, Aussois, France.

[LS05] J.-S. Lee and J.C. Santamarina. Bender elements: performance and sig-
nal interpretation. Journal of geotechnical and geoenvironmental engi-
neering, 131(9):1063–1070, 2005.

[LSL14] C. Lee, H. Shin, and J.-S. Lee. Behavior of sand–rubber particle mix-
tures: experimental observations and numerical simulations. Interna-
tional Journal for Numerical and Analytical Methods in Geomechanics,
38(16):1651–1663, 2014.

Taghizadeh, Luding, Magnanimo 163

ALERT Doctoral School 2017



[Lud98] S. Luding. Collisions & contacts between two particles. Physics of dry
granular media, pages 285–304, 1998.

[Lud05] S. Luding. Anisotropy in cohesive, frictional granular media. Journal of
Physics: Condensed Matter, 17(24):S2623, 2005.

[Lud07] S. Luding. The effect of friction on wide shear bands. Particulate Science
and Technology, 26(1):33–42, 2007.

[Lud08] S. Luding. Introduction to discrete element methods: basic of contact
force models and how to perform the micro-macro transition to contin-
uum theory. European Journal of Environmental and Civil Engineering,
12(7-8):785–826, 2008.

[Mai93] R.J. Mair. Developments in geotechnical engineering research: Appli-
cation to tunnels and deep excavations. In Proceedings of the Institution
of Civil Engineers-Civil Engineering, volume 97, pages 27–41. Thomas
Telford-ICE Virtual Library, 1993.

[Mar] C.L. Martin. Advanced contact laws. ALERT geomaterials Doctoral
School 2017, Aussois, France.

[MGJS04] H.A. Makse, N. Gland, D.L. Johnson, and L. Schwartz. Granular pack-
ings: Nonlinear elasticity, sound propagation, and collective relaxation
dynamics. Physical Review E, 70(6):061302, 2004.

[ML17] A. Merkel and S. Luding. Enhanced micropolar model for wave propa-
gation in ordered granular materials. International journal of solids and
structures, 106:91–105, 2017.

[MLRJ+08] V. Magnanimo, L. La Ragione, J.T. Jenkins, P. Wang, and H.A. Makse.
Characterizing the shear and bulk moduli of an idealized granular mate-
rial. EPL (Europhysics Letters), 81(3):34006, 2008.

[MML06] O. Mouraille, W.A. Mulder, and S. Luding. Sound wave acceleration in
granular materials. Journal of Statistical Mechanics: Theory and Exper-
iment, 2006(07):P07023, 2006.

[MTLL04] M. Madadi, O. Tsoungui, M. Lätzel, and S. Luding. On the fabric tensor
of polydisperse granular materials in 2D. International Journal of Solids
and Structures, 41(9):2563–2580, 2004.

[Oda72] M. Oda. Initial fabrics and their relations to mechanical properties of
granular material. Soils and foundations, 12(1):17–36, 1972.

[OOtW15] J. O’Donovan, C. O’Sullivan, G. the, and D.M. Wood. Anisotropic stress
and shear wave velocity: (DEM) studies of a crystalline granular mate-
rial. Granular Matter, (17):197–216, 2015.

[Rad] F. Radjai. The contact dynamics (CD) method. ALERT geomaterials
Doctoral School 2017, Aussois, France.

164 DEM applied to soil mechanics

ALERT Doctoral School 2017



[Sat82] M. Satake. Fabric tensor in granular materials. In Proc., IUTAM Symp. on
Deformation and Failure of Granular materials, Delft, The Netherlands,
1982.

[Saw12] A. Sawangsuriya. Wave Propagation Methods for Determining Stiffness
of Geomaterials. INTECH Open Access Publisher, 2012.

[SL17a] R.K. Shrivastava and S. Luding. Effect of disorder on bulk soundwave
speed : A multiscale spectral analysis. Nonlinear Processes in Geo-
physics Discussions, 2017:1–37, 2017.

[SL17b] R.K. Shrivastava and S. Luding. Wave propagation of spectral energy
content in a granular chain. EPJ Web Conf., 140:02023, 2017.

[SMLW12] M.R. Shaebani, M. Madadi, S. Luding, and D.E. Wolf. Influence of poly-
dispersity on micromechanics of granular materials. Physical Review E,
85(1):011301, 2012.

[SNDD09] L. Sibille, F. Nicot, F.-V. Donzé, and F. Darve. Analysis of failure occur-
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Conventional triaxial tests performed on samples of Tournemire shale showed a 

strong nonlinearity of the plastic yield response. For this type of rock, the use of a 

conventional linear Mohr–Coulomb criterion to predict the evolution of the strength 

is of limited value and should be replaced by nonlinear failure criteria such as the 

one proposed by Singh, which is based on the critical stress introduced by Barton. 

Moreover, the experimental tests showed a strong dependency of the strength on the 

bedding orientation. Singh’s empirical nonlinear failure criterion provides an im-

proved prediction of strength, but it does not explain the associated failure mecha-

nisms. To overcome this limitation, a Discrete Element Method (DEM) model has 

been used to simulate the triaxial tests performed on the Tournemire shale. The 

model confirms that (I) for a perpendicular orientation of the bedding with respect 

to the maximum principal stress direction, fracture occurs through the bedding 

plane leading to a maximum strength, (II) for a parallel orientation of the bedding, 

splitting along the bedding planes appears, leading to an intermediate strength and 

(III) for an orientation of 45°, the deformation always localizes along the bedding 

orientations, leading to a minimum strength. The DEM model, in its current formu-

lation, fails to reproduce the saturation of the failure envelop in the present case. 

1 Introduction  

Strength prediction of caprocks is a basic requirement to assess their integrity 

[Jon03,Mil04,Dam06]. By integrity, we mean the ability of the rock to keep its me-

chanical properties below its plastic limit as well as maintaining its hydraulic con-

ductivity low enough to prevent major fluid migration or irreversible damage, while 

the in-situ stress state or the fluid pressure can vary considerably. At the petroleum 

reservoir or underground nuclear waste storage scale, rocks cannot be considered as 
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intact environments because fracture sets or faults are generally present, modifying 

significantly the strength and hydraulic properties of the medium [Hoo11]. 

Nonetheless, even though these discontinuities need to be considered above the 

meter scale, the intact rock properties still need to be thoroughly characterized be-

fore any further hydromechanical investigations. Focusing on the intact rock 

strength is a key point because in the upper crust conditions, rocks behave as dilatant 

materials when subject to plastic deformation and this increase of volume can induce 

dramatic changes in its hydraulic properties..  

Caprocks or underground storage barrier rocks present very low permeability values, 

i.e. well below the milliDarcy level. In sedimentary rocks, this appears in clay rich 

rocks, which is the case for most of shale rocks [Hen2016].  

A particular point is that the strength of these rock types varies in a nonlinear man-

ner with the confining pressure and it is interesting to note that despite this unani-

mously observed behavior, the linear Mohr-Coulomb criterion is still widely used to 

predict the failure of shales [Bar13].  

Ultimately, the analytical formulation of a complete non-linear failure criterion 

should be based on the mineralogy content of the rock. However, such formulation 

can become highly complex and requires large amounts of data (see Shen et al., 

2012 for example). In a first approach, due to the difficulty to perform exhaustive 

experimental testing, one could try to define a simple but nonetheless reliable for-

mulation to predict the strength of shale rock. Non-linear empirical formulations, 

such as the ones proposed by Hoek and Brown [Hoe97] or Singh et al. 

[Sin11,Sin15], are valuable attempts. 

A second point is that these rocks usually present an anisotropic structure, character-

ized by lamination, parallel layering or bedding features. These fabric properties 

induce a strong anisotropic behavior for both their elastic and plastic properties. It is 

thus crucial to take this mechanical and micro-structural anisotropy into account 

when formulating a strength model [Com17]. 

Empirical formulations are easy to use, but they poorly explain underlying mechani-

cal processes. This is why, besides setting up simple analytical formulation, numeri-

cal model are very useful to help in understanding failure mechanisms. An interest-

ing numerical tool to perform such analyses is the Discrete Element Method 

[Don95,Don09,Pot04,Lud17,Mar17]. Because DEM considers, at a certain level, the 

fabric properties of the material, it provides indications on how the microstructure of 

a material can drive the deformation. 

In this paper, we propose to study the strength of the Tournemire shale rock and, 

based on experimental laboratory test results, compare the Mohr-Coulomb criterion 

to the one proposed by Singh et al. [Sin11,Sin15]. Finally, the Discrete Element 

Method will be used to discuss how the fabric can contribute to the non-linearity and 

the anisotropic nature of the mechanical response (see also Ref. [Lud17]).   
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2 Tournemire shale: triaxial tests and the Mohr-

Coulomb failure criterion  

Triaxial tests performed on Tournemire shale rock samples drilled along different 

orientations relative to the bedding (β = 0◦, 45◦, 90◦) were performed to characterize 

their respective strength [Bon17]. These tests were carried out at confining pressures 

ranging from 2.5 to 80 MPa, with a strain rate of 3 × 10−7 s−1. Plotting the peak 

stress values for different differential stresses vs. confining stresses provides the 

trends of the plastic yield envelop (Figure 1). As expected for rock-like materials, 

the failure envelop is nonlinear. Moreover, the orientation of the principal stress 

relative to the bedding greatly modifies the strength of the medium, with a minimum 

strength observed for loadings applied at 45° relative to the bedding and a maximum 

strength for 90°. Following Mohr-Coulomb theory, the apparent friction coefficient 

as well as the uniaxial compressive strength of the material can be calculated by 

fitting a least-squares line on the three plots (Figure 1). The conventional Mohr–

Coulomb criterion for transversely isotropic rocks can be written as: 

 

    𝜎1 = 𝜎𝑐𝛽 +
1+sin 𝜑𝛽0

1−sin 𝜑𝛽0
𝜎3                 (1) 

 

where σ1, σ3 are the major and minor principal stresses at failure, with 

 

 

    𝜎𝑐𝛽 =
2𝜎𝛽0 cos 𝜑𝛽0

1−sin 𝜑𝛽0
                   (2) 

 

the unconfined compressive strength (UCS) of the material and β the angle defining 

the orientation of the bedding (isotropy plane) with respect to the major principal 

stress direction. In equation 2, cβ0 and ϕβ0 are the Mohr–Coulomb cohesion and peak 

friction angle obtained from the triaxial tests performed at low confining pressure (σ3 

→ 0). 

In its conventional linear form, the Mohr–Coulomb criterion may thus be written as: 

 

   𝜎1 − 𝜎3 = 𝜎𝑐𝛽 +
2 sin 𝜑𝛽0

1−sin 𝜑𝛽0
𝜎3                (3) 

 

Using equation 3, one can determine the respective UCS and friction coefficient for 

the three orientations β (Table 1). 
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Bedding orientation  β 

[-] 

Friction coefficient μβ    

[-] 

UCS 𝜎𝑐𝛽           

[MPa] 

90° (green line) 0.35 31.15  

45° (red line) 0.20 23.32   

0° (blue line) 0.20 44.99   

Table 1: Tournemire rock strength parameters obtained from fitting the experimental 

data [Bon17] with the conventional linear Mohr–Coulomb criterion. The color code 

refers to Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Top: Sample configurations for each bedding orientation. Bottom: Peak 

stresses in the differential stress (σ1 - σ3) vs. confining stress σ3 plan with the associ-

ated Mohr-Coulomb failure envelops obtained using the least-square method (β = 

90° in green, β = 45° in red and β = 0° in blue). 

 

It can be seen that fitting the Mohr-Coulomb failure criterion to the experimental 

data is a hazardous strategy as it clearly overestimates the UCS but also the plastic 

yield at high confining stresses. Indeed, the failure of the material is highly nonline-

β = 90° β = 45° β = 0° 

β 
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ar and cannot be approximated by a Mohr-Coulomb type criterion. One can also be 

puzzled by the representativity of the friction coefficient values at low and high 

confining stresses.  

3 Nonlinear strength criterion 

Recent studies based upon the results of hundreds of triaxial tests carried out on 

laminated rocks [Sin11,Sin15] showed that the linearity of the strength envelop is 

lost when σ3 = σcrt ≈ σc (UCS)  for the majority of shale rocks [Bar13]. This critical 

confining stress σcrt has been proposed [Bar76] to identify the limit value of the 

supported differential stress by the rock. In case of fully saturated rocks containing 

an important clay fraction, this critical stress is generally observed.  

A possible approach to formulate such a non-linear rupture criterion is to add a sec-

ond-degree term to the conventional linear Mohr–Coulomb criterion given in equa-

tion (3), to take into account the non-linearity in the strength criterion [Sin15]. Re-

placing the friction angle by the coefficient of friction, the resulting criterion can be 

written as, 

 

 𝜎1 − 𝜎3 = 𝜎𝑐𝛽 +
2𝜇𝛽0

√1+ 𝜇𝛽0
2−𝜇𝛽0

𝜎3 −
1

𝜎𝑐𝑟𝑡

𝜇𝛽0

√1+ 𝜇𝛽0
2−𝜇𝛽0

𝜎3
2  for 0 ≤ 𝜎3 ≤ 𝜎𝑐𝑟𝑡 (4) 

where μβ0 is the coefficient of internal friction of the rock ( i.e. μβ0 = tan(ϕβ0) ) with 

planes of anisotropy oriented at an angle β from the major principal stress direction. 

For confining pressures σ3 > σcrit, the criterion takes on a constant value such as, 

 

𝜎1 − 𝜎3 = 𝜎𝑐𝛽 +
sin 𝜑𝛽0

1−sin 𝜑𝛽0
𝜎𝑐𝑟𝑡  for  𝜎3 > 𝜎𝑐𝑟𝑡          (5) 

To apply the above criterion, the UCS σcβ of the rock at a given orientation β should 

be known, which is unfortunately not the case for the triaxial tests carried out in 

[Bon17]. Nonetheless, these UCS can be extrapolated from the low confinement 

peak stresses (see Figure 2).  Using the apparent friction coefficients and the UCS 

for each bedding orientation as well as the critical stress value σcrt given in Table 2, 

the Singh failure envelops fitting the data set provided by Bonnelye et al. [Bon17] 

can be obtained (Figure 2). 

 

Bedding orientation  β 

[-] 

Friction coefficient μβ 

[-] 

UCS 𝜎𝑐    

[MPa] 

σcrt / max(σc) 

[-] 

90° (green line) 0.7 27 1.25 

45° (red line) 0.7 10 1.25 

0° (blue line) 0. 8 20 1.25 

Table 2: Tournemire rock strength parameters used to calibrate the Singh non-linear 

failure criterion. 
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Figure 2. Singh [Sin15] failure criterion applied to Tournemire Shale rock fitting the 

experimental dataset [Bon16], (β = 90° in green, β = 45° in red and β = 0° in blue). 

 

It can be seen that using a non-linear criterion, the complete spectrum of the peak 

friction coefficients are considered whatever the confining stress value is. Moreover, 

the UCS can be predicted in a more reasonable manner. Note that the only extra 

requirement needed to set up this nonlinear strength criterion is the value of the 

critical stress σcrt which is estimated from the UCS.   

4  Discrete Element modeling 

In order to simulate the behavior of the Tournemire shale rock, we use the bonded 

particle model (BPM) proposed by [Sch13] implemented in the open source code 

YADE Open DEM [Koz08,Koz09,Šmi10]. The rock sample is represented by a 

dense polydisperse assembly of spherical discrete elements interacting through elas-

tic-brittle constitutive laws. A linear force-displacement relationship is defined for 

both the normal and the tangential directions to the contacts. The contact forces can 

increase up to threshold values defined through a Mohr-Coulomb type failure crite-

rion associated to a tensile cut off. Interparticle bonds can thus fail under either 

mode I (tensile) or mode II (shear) rupture. Explicit time domain integration is used 

to solve the dynamic problem involving Newton’s second’s law of motion. A non-

viscous type damping is introduced to decrease the inertial response of the discrete 

elements and thus ease the convergence towards a quasi-static equilibrium. 
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Based on the approach proposed by [Dua15], fabric anisotropy is explicitly modeled 

by introducing preferentially oriented weakness planes in the discrete element pack-

ing (Figure 3). The weakness planes are defined at the inter-particle scale, by setting 

the contacts orientation accordingly to the direction of the bedding (or lamination) of 

the geomaterial. These weakness planes have mechanical properties that differ from 

the ones making up the rock matrix (e.g. without cohesion to mimic pre-existing 

microcracks). The procedure consists in finding every bond dipping sub-parallel to 

the beddings and reorienting them according to the bedding orientation (Figure 3). 

Obviously, the amount of weakness planes introduced in the medium directly affects 

its degree of anisotropy and has thus to be predefined accordingly. The weakness 

planes obey the joint contact logic introduced by Scholtès and Donzé [Sch12], 

which was inspired by the “smooth joint contact” logic initially proposed by Ivars et 

al. [Iva10]. 

 

 

 

 

 

 

 

 

 

Figure 3. Introducing fabric and strength anisotropy in the DEM model: (left) detec-

tion of the bonds dipping sub-parallel to the bedding plane , (right) reorientation of 

the bonds according to the direction of the bedding  (right)(adapted from Dinç and 

Scholtès [Din17]).    

4.1 Reproducing the anisotropic response of the strength 

The degree of anisotropy can be quantified by the ‘anisotropy ratio’ defined by 

Ramamurthy [Ram01] as the ratio between the maximum and the minimum com-

pressive strength σcβ of the rock for a given confining pressure. If not known, three 

tests conducted at respective orientations β = 0°, 90° and 45° can be used.  

The DEM model is used here to simulate the Tournemire shale rock experiments 

introduced previously. Rather than a limited study of only three orientations, it is 

straightforward to consider several other orientations to obtain a more complete 

characterization of the strength dependence on rotation.  The evolution of the UCS 

for different bedding orientations is presented in Figure 4. It can be seen that the 

numerical model can reasonably predict the UCS given by Singh’s criterion from the 

extrapolation of the experimental data set. The anisotropy ratio obtained by Singh is 

2.7 (from Table 2) compared to 2.23 for the numerical model (see Figure 4).  

Based on these results, it can be examined in detailed how the stress loading along 

different bedding orientations leads to these different strength values. One has to 

mention that clay particles found in shale rocks are very small, of the order of the 

micrometer, and their shape depends on the type of clay (e.g. smectite, illite or kao-
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linite [Wil14]). The present numerical model does not intend to reproduce the rock 

medium of clay particle shapes and sizes, but rather is a discrete representation re-

producing the localization of the deformation at the lamination scale. This localiza-

tion is indeed strongly dependent on the orientation of the anisotropy as reported by 

Bonnelye et al. [Bon17] and presented in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Variations of the UCS vs. the anisotropy angle. The red dots are the values 

predicted by Singh (Table 2) and the blue line corresponds to the values obtained 

numerically. 

 

Different types of localization were observed in the post-mortem samples of Tour-

nemire shale. The samples were soaked in epoxy in order to see at sample scale and 

microscale the evolution of strain localization. One observes formation of shear 

fractures crossing the laminations when they are perpendicularly oriented to the 

maximum stress direction (Figure 5, left). In this case, this is the peak friction coef-

ficient of the intact matrix which is the driving parameter of the localization process, 

whereas for a 45° orientation of the bedding, the weak anisotropic planes are now 

mainly reactivated, leading to an overall sliding process along the lamination direc-

tion (Figure 5, center). This orientation corresponds to the weakest strength of the 

sample. Finally, for a 0° orientation of the bedding, there is a competition between a 

split process along the vertical weak planes and the formation of shear fractures 

occurring in the direction associated to the peak friction coefficient of the intact 

matrix (Figure 5, right). The resulting strength might be dependent on the density of 

the bedding planes. These different types of localization were also predicted by the 

DEM model (Figure 5, top). For the three different configurations, the deformation 

field has been represented in the 3D numerical sample: the zones colored in red 

indicate where a maximum deformation occurs. For an orientation of β = 90°, the 

fracture is always localized in a single fracture, for an orientation of β = 45°, the 

deformation is localized along the bedding orientation and for an orientation of β = 

0°, both splitting and shearing processes are generated. 
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4.2 Reproducing the non-linearity of the failure envelop 

The differential stresses versus the confining stress are presented in Figure 6. For 

comparison, the values obtained experimentally, Singh criterion and the DEM model 

’s results are plotted on the same graph. The increase of the strength with the in-

crease of the confining stress at low stress is reproduced by both Singh and the DEM 

model. However, the DEM model fails to reproduce the strong curvature and satura-

tion of the failure envelop. As the confining stress increases, the strength of the 

numerical model increases linearly, exceeding dramatically the values obtained 

experimentally. Even selecting a low friction angle value at the level of the bonds 

when these break, the apparent shear strength is overestimated in the present case. It 

seems that an important key property of the material is not considered in the numeri-

cal model. It could be related to changes in the fabric itself. It has been observed 

experimentally that on the fracture plane, the grains are reoriented in a very thin 

layer, producing a smooth fracture [Bon17]. Added to the fact that the shale rocks 

contain water which cannot escape during the deformation due to the low permeabil-

ity, the resulting effective stress along the fracture planes tends to decrease. These 

features thus must be taken into account in the DEM model.  

 

 

 

 

 

  

 

 

 

 

 

Figure 5. On top, the localization of the deformation predicted by the DEM model 

for different bedding β orientations. The zones colored in red correspond to the high 

shear strain values. Bottom, for the corresponding orientations β, post mortem imag-

es of fractured samples from Bonnelye et al., [Bon17]. The bedding orientation is 

highlighted as yellow lines, whereas the fractures are red lines. 

β = 90° β = 45° β = 0° 
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Figure 6. Differential stress as a function of confining stress: the values obtained 

experimentally, the Singh’s criterion (plain curves) and the DEM model prediction 

(dashed lines with stars) are plotted for β = 90° in green, β = 45° in red and β = 0° in 

blue. 

5  Conclusions 

Experimental triaxial tests carried out on Tournemire shale rock have shown that the 

bedding orientation has a strong impact on peak stress, with the orientation β = 45° 

the weakest and β = 90° the strongest. A nonlinear failure envelope with saturation 

has also been observed. As strength criterion based on the critical stress concept is 

more relevant to express a realistic plastic yield envelop rather than just considering 

a conventional linear Mohr–Coulomb criterion, which provides unreasonable values 

of both friction coefficient and UCS. Note that back analysis of thousands of triaxial 

tests, indicates that for the application of the Singh criterion, the critical confining 

pressure for inherently anisotropic rocks may be taken nearly equal to 1.25 of the 

maximum UCS value. In the present study, it has been shown that this value also 

provided a good prediction of the experimental results. 

Since Mohr–Coulomb and Singh criteria do not provide any description on how the 

failure develops in the sample, we used a discrete element model. From the experi-

mental tests, post-mortem sample analysis showed that the way fracture develops in 

the sample depends on the bedding orientation. For an orientation β = 90°, a fracture 

occurs through the bedding plane at all confining pressures. For an orientation β = 

0°, the fracture propagates along the bedding planes at low confining pressures and 

through the bedding planes when the confining pressure increases. Finally, for an 

orientation β = 45°, deformation localizes along the bedding plane as it is aligned 
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with the maximum shear stress.  The numerical simulations show exactly the same 

trends, supporting the assumption that in this type of material, at the first order, the 

lamination scale anisotropy and heterogeneity cannot be ignored. However, the 

model fails to reproduce the limited shear strength for the higher confining values: 

the model needs to be improved to also reproduce the inner properties of the clay 

fraction and interplay with pore water. 
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Discrete particle simulations with
MercuryDPM

D. Tunuguntla, T. Weinhart, A. Thornton

University of Twente, The Netherlands
MercuryLab BV, The Netherlands

In this paper we give a brief introduction to the open-source particle simulation code
MercuryDPM, available at http: // MercuryDPM. org . The focus is on practically
using the code, with detailed installation and running instructions given. A large
section is dedicated to coarse-graining, an advanced method for mapping discrete
(particle) data to continuum data. MercuryDPM includes a coarse-graining tool,
MercuryCG, and the chapter ends with exercises to both demonstrate MercuryDPM
and MercuryCG.

Preface

The information contained in this chapter is taken from the book ‘The Fundamentals of
Discrete Particle Simulations’ March 2017 edition. MercuryLab BV holds the copy-
right of the aforementioned book. All copyright material reproduced in this chapter is
done with the written permission of MercuryLab BV.

1 About MercuryDPM

MercuryDPM is a code for efficiently performing fully three-dimensional discrete
particle simulations [Tea13, TKF+13, Wea17]. The method is referred to as discrete
element method (DEM), as introduced in [LRW], or discrete particle method (DPM)
in other literature. It is a very versatile, object-orientated C++ code, which is easily un-
derstandable. It has been tested for several Linux distributions, Mac OS and Windows

10.1. The users specify the particulars of their simulation (initial positions, inflow,
outflow, walls, interaction parameters) in a single driver file, which calls the kernel to
do the simulations. All kernel functions are documented here, and there are several
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driver samples available. To avoid breaking already existing code, a suite of self-tests
has been developed testing pre-existing features of the code.

Since it was first started, MercuryDPM has evolved and gained many novel features.
The main features include:

• The hierarchical grid: This neighbourhood search algorithm effectively com-
putes interaction forces, even for highly poly-dispersed particles distributions.

• Statistics: MercuryDPM has an in-built advanced statistics package, MercuryCG,
to extract continuum fields such as density, velocity, structure and stress tensors,
either during the computation or as a post-processing step. It can also be applied
to extract drags and partial stresses in polydispersed flows.

• Access to continuum fields in real time: The code can be run in live statistics
mode, which means it can respond to its current macroscopic state. An illustra-
tive example of using this would be a pressure-release wall, i.e., a wall whose
motion is determined by the macroscopic pressure created by particle collisions
and moves such that its pressure (not position) is controlled.

• Contact laws for granular materials: many granular contact force models are im-
plemented, including elastic (linear or Hertzian), plastic, cohesive (dry or wet),
temperature, pressure, and time-dependent force laws (sintering), and frictional
forces (sliding/rolling/torsion).

• Simple C++ implementation: MercuryDPM consists of a series of C++ classes
that are flexible, but easy to use. This allows the user to generate advanced
applications with only a few lines of code.

• Handlers: The code has handlers for particles, walls and boundaries. Thus,
each object type has a common interface, even though individual objects can
have completely different properties. This also makes it easier for the user to
create new objects.

• Complex walls: The code not only supports simple flat walls, but also axial-
symmetric, polyhedral and helical screw walls are available. Additionally, due
to the handler interface, it is easy for more advanced users to define new types
of walls themselves.

• Specialised classes: Many specialised classes exist that reduce the amount of
code required by the user to develop standard geometries and applications. Ex-
amples include chute flows, vertically vibrated walls and rotating drums.

• Species: Particles and walls each have a unique species, which is hidden for
basic use of the code; however, this feature can be enabled by a single func-
tion call. Different particle properties for each species and different interaction
forces for each pair of species can then be defined, allowing the simulation of
mixtures.

• Self-test suite and demos: MercuryDPM comes with a large (over 100) number
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of self-tests and demo codes. These serve two purposes: 1) they allow us to
constantly test both new and old features so we can keep bugs to a minimum; 2)
they serve as tutorials, for new users, of how to do different tasks.

• Simple restarting: every time a code is run (and at intervals during the compu-
tation) restart files are generated. Codes can be restarted without recompilation
simply by calling the executable again with the restart file name as an argu-
ment. Also the restart files are complete in the sense that they contain all the
information about the problem. In this way, small changes can be made (for
example with the individual particle density or the coefficient of restitution) and
the simulation can be rerun without the need for recompilation of the code.

• Interface to other particle simulation codes: The restarting interface is further
used to provide an interface to load external data (including experimental data,
other particle codes such as EDEM, and molecular dynamics) into Mercury-
DPM for post-processing with MercuryCG.

• Visualisation: The particles output can be visualised easily using the free pack-
ages VMD and Paraview.

2 Installation Instructions

2.1 Windows versions older than 10.1

Since MercuryDPM was originally designed for use with Unix systems, Windows
users must first install a linux emulator software to allow compatibility. We recom-
mend the program Cygwin (Click here).

This is not necessary for Windows 10.1; please see MercuryDPM website for Win-
dows 10 instructions.

2.1.1 Installation of Cygwin

After downloading and opening the relevant executable (most likely setup-x86.exe),
follow the default instructions until you see a screen resembling the one below asking
you to select packages:
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At this point, the packages listed below should be included by clicking on the ’+’
icon of the relevant heading and then clicking the name of the relevant package until
a version number is displayed.

The majority of the relevant packages may be found under the ’Devel’ heading which
can be seen in the above image, although it may be easier to simply find the relevant
packages using the search bar at the top-left of the window. It is not necessary at this
point to fully understand the function of each package; for now, they simply need to
be installed.

The necessary packages are:

1. The complete X11 package

2. cmake and cmake-gui: A cross-platform makefile generation system. (Note:
cmake-gui is not available in the 32-bit version of Cygwin. For 32-bit machines
’ccmake’, which is included with cmake, may instead be used).

3. make: the GNU version of the ’make’ utility

4. If you do not already have a C++ compiler installed, you should also install the
’gcc-g++ C++ compiler’ package, which is also under the ’Devel’ heading.

5. Optional: You may additionally wish to install ’gnuplot’ and ’gnuplot-x11’
which will allow you to easily and quickly visualise results produced using
MercuryDPM.

Note, it is highly advisable to keep your Cygwin updated to the latest version.

2.1.2 Installation of SVN

In addition to Cygwin, the installation of MercuryDPM will require an SVN client
such as ’TortoiseSVN’ (http://tortoisesvn.net). Once downloaded, Tortoise
SVN may simply be installed using the default setup.
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Once this process is complete, we are ready to download MercuryDPM itself! This
can be achieved by following the simple steps below:

1. Open Windows explorer.

2. Choose a folder into which you want to copy the MercuryDPM source code, for
example ’C:/cygwin/home/username/MercuryDPM’

3. Right click and select: ’SVN Checkout’. You will then see the screen shown
below:

4. Enter ’http://svn.mercurydpm.org/SourceCode/Beta’ as URL. Note, if you want
to download the ’release’ version of Mercury, simply replace ’Beta’ in the above
path with ’Release/[RELEASE NUMBER]’. The number of the current release
can be found on the MercuryDPM website (http://mercurydpm.org).

5. Click ’ok’ and wait for the checkout to finish. Click ’ok’

2.1.3 Final steps

Now open the ’XWin Server’ tool (under Start Menu -> Cygwin). You should now
get a terminal similar to that used on Mac and Linux machines. Note that the ’XWin
Server’ is not the same as the main Cygwin terminal. Press the ’Windows’ key and
type ’XWin Server’ to open it.

You are now ready to follow the instructions listed below in Installation of Mercury-
DPM. If cmake-gui is not installed use ccmake instead.
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2.2 Linux and MacOS users

Before installing MercuryDPM, you have to make sure the following packages are
installed:

1. Compiler with c++11 features, for instance clang 3.4 or higher.

2. SVN (’subversion’) version 1.7 or above (Click here).

3. CMake version 2.8 or higher (Click here)

4. Optional: Doxygen, which may be used to create documentation while building
your own source code (Click here).

5. For Mac users: the latest version of Xcode is recommended
(Click here).

6. For Mac users: If you want to visualise your results, XQuartz may be installed
as an alternative to X11 (Click here).

Once the above procedures have been followed and the relevant packages installed,
we are ready to begin installing Mercury!

2.2.1 Installation of MercuryDPM

1. Open the terminal or shell. Create a directory called ’MercuryDPM’, at a loca-
tion of your choice, by typing

mkdir MercuryDPM

2. To get into the folder MercuryDPM, type

cd MercuryDPM/

3. Once in the folder MercuryDPM, download or check out the beta version of the
DPM source by typing

svn checkout https://svn.MercuryDPM.org/SourceCode/Beta

↪→ MercurySource

The above command downloads the DPM source code into the folder named
’MercurySource’. Please note that the symbol ‘↪→’ in the above box indicates a
space delimiter, i.e. when typing the above command in the terminal the arrow
is to be replaced with a space.

4. In the current folder, i.e. MercuryDPM, create another directory called ’Mer-
curyBuild’

mkdir MercuryBuild
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5. Get into the folder ’MercuryBuild’ by typing

cd MercuryBuild

Installation with CMake GUI:

1. Assuming CMake is successfully installed, go to the newly created ’Mercury-
Build’ directory. From here, you can create the executables from the Mercury
source code by typing:

cmake-gui ../MercurySource/

A GUI pops up on your screen as in the picture shown below

(a) Click on ’Browse Source’ and locate the ’MercurySource’ directory.

(b) Click on ’Browse Build’ and locate the ’MercuryBuild’ directory.

(c) Make sure option ’Grouped’ is selected and ’Advanced’ is deselected.

(d) Click ’Configure’

2. After clicking on ’Configure’, the following window appears on your screen:
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(a) Select ’Unix makefiles’ under specify the generator for this code

(b) Choose ’use default native compilers’

(c) Click on ’Done’

3. Clicking on ’Done’, builds all the files in the directory ’mercuryDPMSource’
and creates the executables.

4. The building/installation progress is visible in the bottom panel of your CMake
window, as seen in the screenshot below.

(a) Any red line in the bottom panel, indicates that some package is missing
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or needs to be installed to have a successful ’configure’. In that case, click
on the ’Advanced’ option to see exactly where the issue is or contact any
of the MercuryDPM team of developers. Among the more frequent error
messages are:

• X11 XRES INCLUDE PATH or X11 XRES LIB not found

You are missing the X11 XRes library; in Ubuntu, you can install
them by opening a terminal and type

sudo apt-get install libxres-dev

• X11 XRT INCLUDE PATH or X11 XT LIB not found

You are missing the X11 Xt library; in Ubuntu, you can install them
by opening a terminal and type

sudo apt-get install libxt-dev

• Some more solutions for common problems are mentioned here:
http://mercurydpm.org/downloads/trouble-shooting.

(b) Once configured for the first time, under the group named ’CMAKE’ type
’Release’ at CMAKE BUILD TYPE. See the picture above.

5. Optional: for documentation tick the box make BUILD DOCUMENTATION, in the
picture as shown below, before you click on ’Configure’.

6. Once you entered all options and configured, click on ’Generate’.
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7. To check if successfully installed, go to your build directory ’MercuryBuild’
using the terminal and type

make fullTest

8. If all the tests have passed, MercuryDPM is successfully installed on your ma-
chine.

Without CMake GUI

1. For users without the GUI, cmake does include an alternative curses-based in-
terface called ’ccmake’.

2. At the terminal, in directory MercuryBuild type

ccmake ../MercurySource/

(a) As seen in the above picture, pressing the key ’c’ configures or builds the
object files or executables from the source directory (MercurySource).

(b) Moreover, before configuring, ’BUILD DOCUMENTATION’ or/and
’Xballs Support’ can be enabled or disabled.

(c) Cmake experts can toggle to advanced mode by pressing the key ’t’ to
have more options and choices.
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(d) Once configured, press the key ’g’ to generate the executables.

3. To check if successfully installed, go to your build directory ’MercuryBuild’
using the terminal and type

make fullTest

4. If all the tests have passed, MercuryDPM is successfully installed on your ma-
chine.

2.3 MercuryDPM mailing list

Please now follow the instructions to sign up for the mailing list at
http://mercurydpm.org/support/mailing-list in order to receive updates about
the code.

3 Output files

Having explained in the previous section how to run a Mercury driver code, we next
explain the form of the file output, and describe how relevant information may be
extracted from these files. Mercury produces data regarding a wide range of system
parameters and, as such, there exist a variety of manners in which this data may be
obtained and processed.
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Running a Mercury executable produces three main output files in which we are in-
terested. Each of the files produced will carry the name of the code used followed by
one of the extensions .data, .fstat and .ene.

For instance, building and running a file named example.cpp will produce exam-
ple.data, example.fstat and example.ene (in addition to several other files which will
be discussed in later sections).

3.1 The .ene file

The simplest of the three file types is the ’.ene’ file, which allows us to interpret the
time evolution of the various forms of energy possessed by the system. Data is writ-
ten at predefined time steps, with the system’s gravitational energy (ene gra), elastic
potential (ene ela) and translational (ene kin) and rotational (ene rot) kinetic en-
ergies being shown alongside the systems centre of mass position in the x, y and z
directions (X COM, Y COM and Z COM, respectively). They are computed as follows:

Enegra =

Np∑

i=1

−mi~ri · ~gi, Eneela =

Np∑

i=1

1

2
knδn 2

i (for linear spring-damper force),

Enekin =

Np∑

i=1

1

2
miv

2
i , Enerot =

Np∑

i=1

1

2
Iiω

2
i , (X,Y,Z)COM =

∑Np
i=1mi~ri∑Np
i=1mi

.

If no other potential forces are present, the sum of the three forces equals the total
energy in the system, and thus can be used to track energy conservation:

Enetot = Enegra + Enekin + Enerot + Eneela.

A typical .ene file looks like this:

t ene_gra ene_kin ene_rot ene_ela X_COM Y_COM Z_COM

0 1.40e-05 0 0 0 0.01 0.01 0.01400

0.01 1.35e-05 5e-07 0 0 0.01 0.01 0.01350

0.02 1.20e-05 2e-06 0 0 0.01 0.01 0.01200

0.03 9.50e-06 4.50e-06 0 0 0.01 0.01 0.00950

0.04 6.00e-06 8.00e-06 0 0 0.01 0.01 0.00600

0.05 1.70e-06 5.10e-09 0 1.11e-05 0.01 0.01 0.00170

0.06 5.55e-06 6.16e-06 0 0 0.01 0.01 0.00555

0.07 8.56e-06 3.15e-06 0 0 0.01 0.01 0.00856

0.08 1.05e-05 1.14e-06 0 0 0.01 0.01 0.01058

0.09 1.15e-05 1.30e-07 0 0 0.01 0.01 0.01159

0.095 1.17e-05 7.40e-12 0 0 0.01 0.01 0.01172

This data is taken from a simulation of a single particle (r = 2cm , m = 0.1 g)
bumping onto a horizontal plate at z = 0 due to gravity (g = 10 m/s2). You can see
the particle losing gravitational energy before the impact, then gaining it again. At
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the same time, the kinetic energy increases, has a peak at the beginning and end of
the collision, then decreases again. During the impact, the kinetic energy decreases
sharply and increases again, while the elastic energy increases and decreases in a
similar manner.

We can use gnuplot to show how the energy is conserved until the collision happens:

MercuryBuild/Drivers/MercurySimpleDemos$ ./FreeFallSelfTest

MercuryBuild/Drivers/MercurySimpleDemos$ gnuplot

gnuplot> p ’FreeFallSelfTest.ene’ u 1:2 w l title ’Ene_grav’, \

’’ u 1:3 w l title ’Ene_kin’, ’’ u 1:5 w l title ’Ene_ela’, \

’’ u 1:($2+$3+$5) w l title ’Ene_tot’

The result is shown in Figure 1.

Figure 1: Energy over time for the free fall demo code.

3.2 The .data file

The next file type we will discuss ’ .data ’ although slightly more complicated, is per-
haps the most useful and versatile of the three, as it provides full information regarding
the positions and velocities of all particles within the system at each given time step.

The files are formatted as follows: at each time step, a single line stating the number
of particles in the system (N), the time corresponding to the current step (time) and
the maximal and minimal spatial boundaries defining the computational volume used
in the simulations (xmin, ymin, zmin, xmax, ymax, zmax) is first output. This
first line is structured as below:

N, time, xmin, ymin, zmin, xmax, ymax, zmax
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1 0 0 0 0 0.01 0.01 0.01

0.01 0.01 0.014005 0 0 0 0.002 0 0 0 0 0 0 0

1 0.02 0 0 0 0.01 0.01 0.01

0.01 0.01 0.012005 0 0 -0.2 0.002 0 0 0 0 0 0 0

1 0.04 0 0 0 0.01 0.01 0.01

0.01 0.01 0.006005 0 0 -0.4 0.002 0 0 0 0 0 0 0

1 0.06 0 0 0 0.01 0.01 0.01

0.01 0.01 0.005773344765077 0 0 0.375052804297 0.002 0 0 0 0 0 0 0

1 0.08 0 0 0 0.01 0.01 0.01

0.01 0.01 0.01127440085102 0 0 0.175052804297 0.002 0 0 0 0 0 0 0

1 0.09512499999999 0 0 0 0.01 0.01 0.01

0.01 0.01 0.01277824639101 0 0 0.023802804297 0.002 0 0 0 0 0 0 0

This output is then followed by a series of N subsequent lines, each providing infor-
mation for one of the N particles within the system at the current point in time. For
each particle, we are given information regarding its current position in three dimen-
sions (x, y, z), the magnitudes of the three components of its instantaneous velocity
(vx, vy, vz), the radius of the particle (rad), its angular position in three dimen-
sions (qx, qy, qz) and the three components of its instantaneous angular velocity
(omex, omey, omez). The term xi represents an additional variable which can be
specified by the user, as described in the documentation of DPMBase::setInfo().
By default, xi represents the species index, which stores information regarding the
particle’s material properties.

These parameters are output in the following order:

x, y, z, vx, vy, vz, rad, qx, qy, qz, omex, omey, omez, xi

The sequence of output lines described above is then repeated for each time step.

It should be noted that the above is the standard output required for three-dimensional
data; for two-dimensional data, only five items of information are given in the initial
line of each time step:

N, time, xmin, zmin, xmax, zmax

and eight in the subsequent N lines:

x, z, vx, vz, rad, qz, omez, xi

Finally, we discuss the .fstat file, which is predominantly used to calculate stresses.

The .fstat output files follow a similar structure to the .data files; for each time step,
three lines are initially output, each preceded by a ’hash’ symbol (#). These lines are
designated as follows:

# time, info

# info

# info
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where time is the current time step, and the values provided in the spaces denoted
’info’ ensure backward compatibility with earlier versions of Mercury.

This initial information is followed by a series of Nc lines corresponding to each of
the Nc particle contacts (as opposed to particles) within the system at the current
instant in time.

Each of these lines is structured as follows:

time, i, j, x, y, z, delta, deltat, fn, ft, nx, ny, nz, tx, ty, tz

Here, i indicates the number used to identify a given particle and j similarly identifies
its contact partner. The symbols x, y and z provide the spatial position of the point
of contact between the two particles i and j, while delta represents the overlap
between the two and deltat the length of the tangential spring. The parameters fn
and ft represent, respectively, the absolute normal and tangential forces acting on the
particles, with the relevant direction provided by the unit vectors defined by nx, ny,

nz for the normal component and tx, ty, tz for the tangential component.

4 Post processing using coarse graining

To formulate accurate continuum models one constantly needs to calibrate and val-
idate them with the available experimental or numerical data, which are discrete in
nature. Hence to perform this mapping in an efficient manner, accurate micro-macro
transition methods are required to obtain continuum fields (such as density, momen-
tum, stress, etc.) from discrete data of individual elements (positions, velocities, ori-
entations, interaction forces, etc.). This is the focus of this chapter: How to perform
the micro-macro transitional step?

Many different techniques have been developed to perform the micro-macro transition,
from discrete data, including Irving & Kirkwood’s approach [IK50] or the method of
planes [TED95]; we refer the interested reader to [WTLB12a, LAM11] and references
therein. Here, we use an accurate micro-macro transitional procedure called coarse-
graining, as described in, e.g., [Bab97, WTLB12b, TTW16, LRW]. When compared
with other simpler methods of performing the micro-macro transitions, the coarse-
graining method has the following advantages: (i) the resulting macroscopic fields
exactly satisfy the equations of continuum mechanics, even near the boundaries, see
[WTLB12b]; (ii) the elements are neither assumed to be spherical or rigid; (iii) the
resulting fields are even valid for a single element and a single time step, hence no
ensemble-averaging is required, i.e. no averaging over several time steps or stamps.
However, the coarse-graining method does assume that (i) each pair of elements has a
single contact; i.e. elements are assumed to be convex in shape; (ii) the contact area
can be replaced by a single contact point, implying that the overlaps are not too large;
(iii) the collisions are enduring (i.e. not instantaneous). Often, micro-macro methods
employ ensemble- or bulk-averaging to obtain accurate results; therefore, the meth-
ods are only valid for homogeneous, steady situations. The coarse-graining method
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overcomes these challenges by applying a local smoothing kernel, coarse-graining
function, with a well-defined smoothing length, i.e. coarse-graining scale, that au-
tomatically generates fields satisfying the continuum equations. As an example, one
could consider a Gaussian as a coarse-graining function with its standard deviation as
a coarse-graining scale.

The coarse-graining method is very flexible and can be used with discrete data from
any source, e.g. molecular dynamics, smoothed particle hydrodynamics, discrete par-
ticle simulations, experimental data [BDR+13], etc. Coarse-graining has been suc-
cessfully extended to allow its application to bulk flows near the boundaries or dis-
continuities [WTLB12b] and to analyse multi-component granular flows [TWT16].
Thus, the following section briefly lays out the idea and expressions of coarse grain-
ing.

4.1 Nomenclature

Given we have different types of constituents: (bulk) type-ν and boundary, whose
interstitial pore-space is filled with a zero-density passive fluid. Each particle i ∈ F ,
where F :=

∑
ν Fν ∪ Fb, will have a radius ai, whose centre of mass is located at

~ri with mass mi and velocity ~vi. The total force ~fi (1), acting on a particle i ∈ F is
computed by summing the forces ~fij due to interactions with the particles of the same
type j ∈ Fν and other type, j ∈ F/Fν , and body forces bi, e.g., gravitational forces
(mig).

~fi =
∑

j∈Fν
j 6=i

~fij +
∑

j∈F/Fν
~fij +~bi, for all i ∈ F

and ν = 1, 2, 3, ..., boundary.

(1)

For each constituent pair, i and j, we define a contact vector ~rij = ~ri − ~rj , an overlap
δij = max(ai + aj − ~rij · ~nij ,0), where ~nij is a unit vector pointing from j to i,
~nij = ~rij/|~rij |. Furthermore, we define a contact point ~cij = ~ri + (ai − δij/2)~nij
and a branch vector~bij = ~ri − ~cij , see Fig. 2. Irrespective of the size of constituent i
and j, for simplicity, we place the contact point, ~cij , in the centre of the contact area
formed by an overlap, δij , which for small overlaps has a negligible effect on particle
dynamics.

In the following sections, we first present the idea of coarse-graining (CG) and then list
the CG expressions for the partial and bulk quantities, using the above nomenclature.
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Figure 2: An illustration of two interacting constituents i and j, where the interaction
is quantified by a certain amount of overlap δij . If ~ri and ~rj denote the particles’
centre of mass then we define the contact vector ~rij = ~ri − ~rj , the contact point
~cij = ~ri + (ai − δij/2)~nij and a branch vector~bij = ~ri − ~cij .

4.2 Idea behind coarse-graining

To illustrate the idea, we consider the partial microscopic (point) mass density for a
system (in a zero-density passive fluid) at point ~r and time t. From statistical mechan-
ics, it is given as

ρν,mic(~r, t) =
∑

i∈Fν
miδ(~r − ~ri(t)), (2)

where δ(~r) is the Dirac delta function in R3. This definition complies with the basic
requirement that the integral of the mass density over a volume in space equals the
mass of all the particles in this volume.

To extract the partial macroscopic mass density field, ρν(~r, t), the partial microscopic
mass density (2) is convolved with a spatial coarse-graining function ψ(~r), e.g. a
Heaviside, Gaussian or a class of Lucy polynomials1. Thus, leading to

ρν(~r, t) :=

∫

R3

ρν,micψ(~r − ~r′)d~r′,

:=
∑

i∈Fν
miψ(~r − ~ri(t)) =

∑

i∈Fν
miψi.

(3)

1For more details regarding the coarse-graining functions see Tunuguntla et al. [TTW16].
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The result is equivalent to replacing the delta-function with a spatial coarse-graining
function (that is positive semi-definite, integrable, and has finite support), ψ(r), also
known as a smoothing function. For simplicity, seen later, we define ψi = ψ(~r−~ri(t)).

5 Coarse-graining expressions: novel micro-macro map

Using the same idea as explained in the previous section, expressions for partial quan-
tities corresponding to constituent type-ν are

Density: ρν =
∑

i∈Fν
miψi,

Momentum: ~P ν =
∑

i∈Fν
mi~viψi,

Velocity: ~uν = ~P ν/ρν ,

Total partial stress: ~σν = ~σkin,ν + ~σcon,ν ,

Kinetic stress: ~σkin,ν =
∑

i∈Fν
mi~v

′
i~v

′
iψi,

Contact stress: ~σcon,ν =
∑

i∈Fν

∑

j∈Fν
j 6=i

~fij~bijΨij + +
∑

i∈Fν

∑

j∈F/Fν
~fij~bijΨij ,

(4)
where in the kinetic stress expression, ~v′i is the fluctuation velocity of particle i, de-
fined as ~v′i(~r, t) = ~u(~r, t) − ~vi(t). Furthermore, in the contact stress expression, ~bij
is the, particle centre to contact point, branch vector as illustrated in Fig. 2. Ψij de-
notes a line integral along the branch vector~bij , Ψij =

∫ 1

0
ψ(~r − ~ri + s~bij)ds, which

ensures the distribution of the force, see (1), between two constituents i and j to the
partial stresses to be proportional to the length of the branch vectors. In other words,
the stresses are distributed proportionally, based on the fraction of the branch vectors
contained within each constituent. Thus, for contacts between a small and a large con-
stituent, the larger-sized constituent receives a larger share of the stress. All the above
partial quantities are derived such that both the mass and momentum balance laws are
exactly satisfied. For more details, see Tunuguntla et al [TTW16].

More importantly, all the above CG expressions, stated in Sec. 5, are implemented
in MercuryDPM. Thereby allowing to extract the continuum fields from, both, the
transient and steady particle data.
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6 Exercises

6.1 Running simulations

After successfully installing MercuryDPM using the earlier stated installation instruc-
tions, the following exercises can be run as follows.

Exercise 1

To run the first exercise problem, which is the Tutorial9.cpp, please go to the
Tutorials directory by typing the following

cd PathToMercuryFolder/MercuryBuild/Drivers/Tutorials

Please note that the PathToMercuryFolder is to be typed in by the user and can be
different on different computers. Once in the Tutorials directory, Tutorial9.cpp
can be executed by typing

./Tutorial9

After successfully running the Tutorial9, the main aim of the exercise is to imple-
ment the below listed changes in the source code Tutorial9.cpp. This is found in
the following directory

cd PathToMercuryFolder/MercurySource/Drivers/Tutorials

In the source directory of the Tutorials, open the Tutorial9.cpp via any text editor,
e.g. vi (terminal based) or Sublime text editor (GUI based). Once opened, please
perform the below requested changes step by step.

• Gradually increase the inclination θ. When does the particle start to roll?

• Set sliding/rolling friction so particle only rolls at 25 degree inclination or more.
Report your values.

• What happens if you set µs < µro?

• Set µro = 0; how does the speed of the particle at time tmax depend on µs?
Can you explain it?

At each step, rerun Tutorial9.cpp by following the same steps that were stated
earlier. However, before running ./Tutorial9 make sure that you have recompiled
and rebuilt the Tutorial9.cpp executable, in order to account for the changes you
have made. This is done by typing

make Tutorial9

Note that the above command is to be typed in the terminal in the directory
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PathToMercuryFolder/MercuryBuild/Drivers/Tutorials

Besides compiling, building and running the Tutorial9, one can also view their result
by executing the following in

./Tutorial9.xballs

Note that the above executable is found in the same directory where ./Tutorial9

was also executed.

Exercise 2

After successfully finishing Exercise 1, run HourGlass2D.cpp and view the xballs
output. The executable for HourGlass2D example can be found in the directory

PathToMercuryFolder/MercuryBuild/Drivers/MercurySimpleDemos

Similarly, the source code HourGlass2D.cpp is found in

PathToMercuryFolder/MercurySource/Drivers/MercurySimpleDemos

However, on running and executing the HourGlass2D exercise, for the first second you
should see particles relaxing in the top half of the hourglass, which has a wall inserted
at the neck to prevent the particles from falling through. At t = 0.9s, that wall is
released, but instead of flowing into the lower part of the hourglass, the particles form
an arch at the neck of the hourglass that prevents outflow.

(i) Run three more cases:

(a) Lower each friction coefficient µ, µrolling , µtorsion by a factor of 2.

(a) Lower each friction coefficient µ, µrolling , µtorsion by a factor of 4.

(b) Set all friction coefficients µ, µrolling , µtorsion to 0.

Report what happens. For which cases do particles flow out? How long does it take
them to flow out? Is friction a factor that influences the flow in an hourglass?

(ii) Now go back to the original, frictional case and modify the neck diameter. How
large a neck do you need for the particles to flow?

Exercise 3

Run FreeFallSelfTest.cpp. Note that the executable is found in the directory

PathToMercuryFolder/MercuryBuild/Drivers/MercurySimpleDemos

Similarly, the source code FreeFallSelfTest.cpp is found in
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PathToMercuryFolder/MercurySource/Drivers/MercurySimpleDemos

After running, use the resulting file FreeFallSelfTest.ene to plot the sum of ki-
netic and potential energy as a function of time (the total energy is the sum of the 2nd,
3rd, 4th and 5th column). Energy should be conserved.

1. Calculate the collision time tc. Be aware that the code is in 2D, so mass mi =
ρπr2i .

2. Gradually increase the timestep dt. When does energy conservation break
down?

3. Plot the energy at time tmax as a function of dt/tc. What ratio of time step
over collision time is safe to use? What time step do you recommend?

4. Modify the dissipation coefficient such that the restitution coefficient for particle-
wall collisions is 0.5, and run it. Plot the total kinetic energy. By how much
does the energy drop after each collision? Does this drop in energy agree with
the expected restitution coefficient?

5. Does the particle come to rest in a finite time? If so, when and why?

Exercise 4

Run FreeCoolingDemo.cpp, whose executable is also found in the

MercurySimpleDemos

directory. On a side note, we hope that by now it is clear that the executables and date
files are found in the build directory whereas the source files are found in the source
directory.

The FreeCoolingDemo code is used to measure the dissipation in a granular gas (such
as sand dunes, shaken powders). However, the simulated volume is much too small
to be realistic. To avoid wall effects, the wall should ideally be replaced by periodic
walls, thus modelling a representative volume of a much larger system. However,
there are some traps when introducing periodic walls:

Modify FreeCoolingDemo.cpp such that only 100 particles are produced and set
tmax = 10 (or more).

• Run the code and plot the kinetic energy over time in log-log scale. You should
see a power law decay.

• Now remove the four walls and replace them by periodic boundary conditions
in both x and y-direction. Describe what happens with the kinetic energy over
time.
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• Give the particles random x- and y-velocities (with zero mean velocity) while
keeping the kinetic energy, Ekin = 1

2

∑N
i=1mi|~vi|2, approximately the same.

Now you should see a similar behaviour as in the original case. Plot kinetic
energy over time for both cases in one plot and describe the differences.

• Compare the mean velocity, ~V = 1
N

∑N
i=1 ~vi, of the initial state with the mean

velocity of the final state. Do the same for the original case with fixed walls.
Describe the differences and give an explanation for this behaviour.

6.2 Analysing data

Exercise 5

Five particles. To get accustomed to coarse-graining, we start with a very simple
example: Five particles positioned on a irregular base made from five fixed particles,
see Figure 3a. The system is nondimensionalised such that particle diameter d = 1,
particle mass m = 1 and gravity g = 1.

Note, this case is chosen only to illustrate the ideas behind coarse-graining. A contin-
uum description of granular media only makes sense if you average over a represen-
tative dataset, which is not the case here.

1. Compile and run the driver named FiveParticles, which is located in the
MercurySimpleDemos directory. Use xballs to view the content of
FiveParticles.data.

cd $MERCURY_BUILD/Drivers/MercurySimpleDemos

make FiveParticles

./FiveParticles

./FiveParticles.xballs

2. Compile fstatistics (in the MercuryCG folder). Now use fstatistics to
create continuum fields for the very last time step (option -tmin 20 -tmax

20.1). Create fields varying in the x and y direction (option -stattype XZ),
with a cg-width ofw = d/10 (option -w 0.1 or -w over rmax 0.4). Evaluate
at points distributed over the whole domain with mesh size of hx = hz = w/2
(option -h 0.05 or -hx 0.05 -hz 0.05). Thus the full command is like this:

make -C ../MercuryCG/fstatistics

../MercuryCG/fstatistics FiveParticles -stattype XZ

-w 0.1 -h 0.05 -tmin 20 -tmax 20.1

3. Now view the output in Matlab or octave. Usually, you have to write your own
matlab script to view the output, but here we have provided you with a sample:
run the script FiveParticles.m to load the content of FiveParticles.stat
and produces a plot of the bulk density similar to Figure 3b.
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Figure 3: Snapshot of the final state of the FiveParticles simulation (left).
Coarse-graining is applied to obtain the bulk density ρ (centre) and pressure p (right).

matlab

>> edit FiveParticles.m %run in Matlab to open the file in

↪→ the editor

>> FiveParticles %run the file in Matlab

4. Modify the script FiveParticles.m to plot the pressure, and thus reproduce
Figure 3c.

Exercise 6

Lees-Edwards shear cell. Now we study a more complex situation, in which a con-
tinuum formulation makes sense: granular media sheared at a constant rate γ̇. For
simplicity, we only consider a 2-dimensional granular medium. To simulate this, Lees-
Edwards boundary conditions are used: two periodic boundaries are defined in x and
y-direction, with particles crossing upward/downward through the y-boundary experi-
encing a velocity increase/decrease of ∆v = γ̇W~x. After a while, the flow will reach
a steady-state with a uniform shear rate in the xz-plane, ∂vx∂y = γ̇.

1. Compile and run the driver named LeesEdwards, which is located in the
MercurySimpleDemos directory. Use xballs to view the content of
LeesEdwardsSelfTest.data.

cd $MERCURY_BUILD/Drivers/MercurySimpleDemos

make LeesEdwardsSelfTest

./LeesEdwardsSelfTest

./LeesEdwardsSelfTest.xballs

2. First we need to find out when the simulation becomes steady: To do this, plot
the kinetic and potential energy in the whole system over time and check when
it becomes steady. You can find time, translational kinetic and potential energy
in columns 1, 3, and 5 of the file LeesEdwardsSelfTest.ene. Use a program
like gnuplot to view the data.

gnuplot

>> plot ’LeesEdwardsSelfTest.ene’ u 1:3
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>> plot ’LeesEdwardsSelfTest.ene’ u 1:5

3. The flow becomes steady very quickly, at about t = 2. To get good statistics,
we need to run for a longer time: Open LeesEdwardsSelfTest.cpp and set
the timeMax to 50 to get more data; then recompile and run the modified code.

Use fstatistics to create continuum fields for the time interval t > 2. Create
fields varying in the x and y direction, with a cg-width of w = d/4 and a mesh
size of h = d/4. Then repeat the process to create fields varying only in the y
direction, with a cg-width of w = d/4 and a mesh size of h = d/10. Thus the
full command is:

../MercuryCG/fstatistics LeesEdwardsSelfTest -stattype XY

-w 0.25 -h 0.25 -tmin 2

../MercuryCG/fstatistics LeesEdwardsSelfTest -stattype Y

-w 0.25 -h 0.1 -tmin 2 -o LeesEdwardsSelfTest.Y.stat

4. Now view the output in Matlab or octave. Usually, you have to write your
own matlab script to view the output, but here we have provided you with a
sample: run the script LeesEdwardsSelfTest.m to load the content of
LeesEdwardsSelfTest.stat and produce a plot of the velocity.

matlab

>> edit LeesEdwardsSelfTest.m

%run in Matlab to open the file in the editor

>> LeesEdwardsSelfTest

%run the file in Matlab

Exercise 7

A basic example of a 2D chute: In order to understand coarse-graining, it is useful
to look at a simple example.

1. First checkout the following folder
svn checkout https://svn.mercurydpm.org/Training/CG/Chute2D

In the folder you have just checkout you find some data, fstat and restart files,
in the subdirectory Data and some script files in the directory XBalls. Also
these is a empty directory Exe that we will use in minutes.

2. Go to your MercuryBuild tree and the subdriectory XBalls and type

make xballs

This will create an executable file xballs. Copy this file to Exe directory in
Chute2D you have just checkout.
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3. Go into the directory XBalls and use the two scripts to see the contains of the
two data files. You will see two short 2D chute simulations; the first is stopping
and the second is flowing an a steady-rate.

4. Go to your MercuryBuild tree and the subdirectory/Drivers/MercuryCG and
type make fstatistics Again copy the file fstatistics to you Exe directory.

5. Go to Data directory and type

../Exe/fstatistics Chute2DStatic -stattype XZ -tmin 15

-tmax 16 -n 200 -w 0.1+

This will create a new file caled Chute2DStatic.stat

6. Go into the Matlab directory and run plotCG1.m. Here, we used a very small
CG width what do we see in the static case?

7. Go back to the Data directory and type

../Exe/fstatistics Chute2DStatic -stattype XZ -tmin 15

-tmax 16 -n 100 -x 5 10 -z 0 5 -w 0.1 -o Chute2DStatic.

↪→ zoom.stat

This create a new file Chute2DStatic.zoom.stat which is a (zoomed) more de-
tailed look at a some region of the data.

8. Make a small change to plotCG1.m to plot the zoomed output. Hint look at
line 3.

9. Now run the following commands

../Exe/fstatistics Chute2D -stattype XZ -tmin 100 -n 100 -w

↪→ 0.5 -o Chute2D.average.stat

and

../Exe/fstatistics Chute2D -stattype XZ -tmin 100 -tmax 101

↪→ -n 100

-w 0.5 -o Chute2D.instant.stat

10. Use the Matlab file plotCG2 to compare when you see in time-averaged and a
data snapshot

Exercise 8

1. If you check out
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svn checkout https://svn.mercurydpm.org/Training/CG/

↪→ Contraction

you will find 3D data on the granular flow through a contradiction. Use fstatis-
tics to coarse-grain this data and see what structures you can find.

Exercise 9

Coarse graining can also be applied to experiment data. In this example we show you
how this is possible. Figure 6.2 shows an images from a rotating drum experiment.

1. Firstly checkout

svn checkout https://svn.mercurydpm.org/Training/CG/

↪→ Experimental

Note, this directory contains a lot of data and it may take a while to check out.
Maybe type this before a coffee break.

2. First go into the Matlab directory and run the code TrackTheBeads.m This will
display a few windows that demonstrates the steps this code takes.

1. The first task of the script is to find the sizes of the images that have
to be read. This is done in order to enable the script to read images
with resolutions that are different from the resolution that is used for this
particular experiment. When this is done, the script creates two annular
shaped masks (stored in the Configuration directory), with the second
being slightly smaller than the first. The larger mask is used to remove
distractions such as the inner and outer parts of the drum from the images
because those parts would cause false positives during the tracking part
of the script if left unmasked. The smaller mask is used to check whether
particles that are found during the tracking step are within the masked
area or at the edges of the mask. This is necessary because the masking
creates artefacts during the blurring that has to happen later on in the
script. These artefacts cause false positives during the tracking step.

2. The images are now ready to be inverted, this is done in order to make
the black particles that are intended to be tracked show up as bright spots
on a darker background. This is necessary because the scripts from The
result of a blurring filter on a masked image. Artefacts at the edges of the
mask is clearly visible. the Matlab Particle Tracing Code Repository are
only able to track bright or fluorescent spots on darker backgrounds.

3. After the images are masked and inverted, they are ready to be blurred
and then tracked. The blurring and tracking parts of the script are done
by the Matlab Particle Tracking Code Repository The blurring is done
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by a function called bpass(), this function blurs the images so the edges
of beads are less bright than the centres of the beads. This is done so the
centres of the particles can be found by looking for the brightest pixel in
a blob. It is important to note that this causes a possible weakness in this
tracking method, because this method assumes that the bright spot of a
particle does not move on a frame by frame basis. This assumption is safe
in this case because the beads are so small, but for larger beads different
methods of tracking should be studied. According to the documentation
in the script, bpass() performs a bandpass by producing a lowpassed im-
age by combining the original image with a Gaussian. A second image
is then produced by combining the original image with a boxcar func-
tion. The boxcar version is then subtracted from the Gaussian version to
produce a highpassed version of the original image.

4. After the image is blurred, the pkfnd() searches for bright spots in the im-
age by stepping through the image pixel-by-pixel and checking whether
a pixel is brighter than all of its neighbours. If a pixel is indeed brighter
than all of its neighbours, its coordinates are stored in a matrix.

5. This matrix is one of the inputs of the cntrd() function, which looks for
the centres of bright spots with sub-pixel accuracy. By stepping through
the list of coordinates that was created by pkfnd() and calculating the
weighted average x- and y-locations of the bright spots. When the lo-
cations of the bright spots have been found, the previously mentioned
smaller mask is applied to the list of locations in order to filter out the
false positives that were found on the edge of the masks. All bright
spots that are found within the smaller mask are tagged with the current
timestep and appended to a matrix that stores these coordinates.

6. After the program has looped through all the images it was told to read,
this matrix is ready to be run through the function called track(). This is
the function that tries to connect found bright spots in consecutive frames
by using the minimal total squared displacement method. If a particle is
‘lost’ between two frames, a new track will be created when the particle
is ‘found’ again.

7. Now that tracking is complete, the velocity components in the x- and y-
direction are calculated using a 5 point stencil. The function that is used
is

f =
f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)

12h
(5)

8. The coordinates and velocities of particles are then formatted in the ap-
propriate format for MercuryDPM (The leading lines are in 3D data for-
mat and the following lines are in format 14) This data is stored as a
.data file. Now we can coarse-grain this data as if it had been created by
MercuryDPM.
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Figure 4: Snapshot of a rotating drum experiment

3. Now change line 14 to plot_to_check_finding = 0; and rerun the code.
This will suppress the output and analyse all 1500 frame. Note, this will take
a few minutes to run. This will create a file called TestData.data in the Output
directory.

4. Use your coarse-graining script with the flags -stattype XY -n 100 -w 1

to create a .stat file from this .data file.

5. Run AnalysisTestData.m to generate a coarse-grained velocity and density plot
of experimental data.
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