

PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON DISCRETE ELEMENT METHODS
(DEM8)

FAST, FLEXIBLE PARTICLE SIMULATIONS:
AN INTRODUCTION TO MERCURYDPM

Thomas Weinhart1,2, Mitchel Post1, Irana FC Denissen1, Deepak R Tunuguntla1, Elena
Grannonio3, Nunzio Losacco3, Joao Barbosa4, Wouter den Otter1, Anthony R

Thornton1,2
1Multiscale Mechanics, Engineering Technology, MESA+, University of Twente

PO Box 217, 7500 AE Enschede, Netherlands
2 Mercury Lab BV, Mekkelholtsweg 10, 7523 DE, Enschede, The Netherlands

3 Department of Civil Engineering and Computer Science, University of Rome “Tor Vergata”
Via del Politecnico 1, 00133 Rome, Italy

4Department of Engineering Structures, Section of Dynamics of Solids and Structures, CiTG, TU
Delft, Stevinweg 1, 2628 CN Delft, The Netherlands

Keywords Granular Materials, DEM, DPM, MercuryDPM, Open-Source.
Abstract We introduce the open-source package MercuryDPM, which we have been
developing over the last few years. MercuryDPM is an object-oriented algorithm with an
easy-to-use user interface and a flexible core, allowing developers to quickly add new
features. It is parallelised using MPI and released under the BSD 3-clause license. Its open-
source developers’ community has developed many features, including moving and curved
walls; state-of-the-art granular contact models; specialised classes for common geometries;
non-spherical particles; general interfaces; restarting; visualisation; a large self-test suite;
extensive documentation; and numerous tutorials and demos. In addition, MercuryDPM has
three major state-of-art components that where originally invented and developed by its
team: an advanced contact detection method, which allows for the first time large
simulations with wide size distributions; curved (non-triangulated) walls; and,
multicomponent temporal coarse-graining, a novel way to extract continuum fields from
discrete particle systems. We illustrate these tools and a selection of other MercuryDPM
features via various applications, including size-driven segregation down inclined planes,
rotating drums, and dosing silos.

1 INTRODUCTION
MercuryDPM [1-4] is an open-source package for particle simulations. It is written mainly in
object-oriented C++; the latest version uses parts of the Fortran LAPACK library. However,
the parts we used are entirely integrated. Thus, it is quicker and there is no need to install
external libraries to use MercuryDPM. It has an easy-to-use user interface and a flexible
core, allowing developers to quickly add new features. It is parallelised using MPI and
released under the BSD 3-clause license. Thus, it can be used as part of closed-source
derivatives as long as the derived software acknowledges the MercuryDPM team.
MercuryDPM was designed ab initio with the aim of allowing the simulation of realistic
geometries and materials, found in industrial and geotechnical applications. It thus contains
several bespoke features invented by the MercuryDPM team: (i) a neighbourhood detection
algorithm that can efficiently simulate highly polydisperse packings, which are common in
industry [5]; (ii) curved walls, making it possible to model real industrial geometries exactly,
without triangulation errors [3]; and (iii) MercuryCG [6-9], a state-of-the-art analysis tool
that extracts local continuum fields, providing accurate analytical/rheological information

FAST, FLEXIBLE PARTICLE SIMULATIONS: AN INTRODUCTION TO MERCURYDPM

often not available from experiments or pilot plants. It further contains a large range of
contact models to simulate complex interactions such as elasto-plastic deformation [17],
sintering [18], melting [15], breaking, wet and dry cohesion [19], and liquid migration [20],
all of which have important industrial applications.
MercuryDPM is being developed by a global network of researchers and in the last few
years has received contributions from universities such as Cambridge, Stanford, EPFL,
Birmingham, Strathclyde, Sydney and Manchester, as well as industry, such as MercuryLab
in Enschede and RCPE in Graz. The code is fully open-source, thus all features we develop
can be accessed and reused freely for both non-commercial and commercial use. We also
encourage all MercuryDPM users to merge the features they develop into MercuryDPM,
thus becoming MercuryDPM developers. The open-source philosophy allows the code base
to grow quickly, and the open-source development reduces the amount of coding errors, as
you get near-imminent feedback from other developers. Its open-source community has
developed many features, including moving and curved walls; state-of-the-art granular
contact models; specialised classes for common geometries; non-spherical particles; general
interfaces; restarting; visualisation; a large self-test suite; extensive documentation; and
numerous tutorials and demos. In the following, we review some of these features.

1.1 Coding philosophy
MercuryDPM is written in an object-oriented programming style, i.e. it uses classes to define
objects: For example, spherical particles are objects of type SphericalParticle; planar
walls are of type InfiniteWall; and periodic boundaries are of type PeriodicBoundary.
To write a MercuryDPM simulation, the class Mercury3D is used: this class contains the
algorithm for time-integration, contact detection, etc, and containers to store the elementary
objects such as particles, walls, boundaries, contact models etc. To make a new process
simulation, the user creates a source file (“driver code”). In this file, he defines an (empty)
object of type Mercury3D, then adds all the elementary objects that define the process he
wants to simulate. A myriad of different classes are already implemented, many of which are
described in following section.
The clear and structured nature of MercuryDPM means it is quick and easy to develop new
features; however, the level of C++ required is still demanding to some users. Therefore, we
are developing a graphical interface and MercuryLab is developing a cloud-computing
platform for MercuryDPM, opening it up to a whole new set of users, both academic and
industrial.

2 FEATURES
2.1 Curved Walls
One of the features originally developed for MercuryDPM is its support of curved geometric
surfaces. Many types of curved surfaces are already implemented and ready for use, such as
polynomials; cone sections; cylinders; helixes, or coils. Note that polygons are not flat
surfaces, as they can have face, edge and vertex contacts. To define more general shapes, a
level-set or NURBS approach can be used. The user can also define new surface types by
writing a function, getDistanceAndNormal(particle), that returns the contact normal and
distance from the wall for any given particle.
Most other codes approximate curved surfaces via triangulated walls. This can be done in
MercuryDPM as well. However, it is not recommended for the following reasons: Firstly,

FAST, FLEXIBLE PARTICLE SIMULATIONS: AN INTRODUCTION TO MERCURYDPM

the discretisation error of triangulating surfaces can be significant, especially for surfaces
with high local curvature, such as coils or helicoidal shapes, or for moving surfaces that are
only separated by a narrow gap. Secondly, as your refine your triangulating you very quickly
get to a large number of triangles, which slows down the contact detection; whereas, with the
MercuryDPM curved wall support you have just one wall.

Class Description
InfiniteWall Planar surface

IntersectionOfWalls Convex polyhedron
AxisymmetricIntersectionOfWalls Cones, cylinders, etc created by rotating a convex polygon around an axis

TriangleWall Triangulated surface
Coil Coil
Screw Helical screw (single- or double-threaded)

SineWall Wall with sinusoidal variation
Level-set wall Iso-surface of a piecewise-linear function [21]

NurbsWall NURBS surface [22]

Table 2.1 Overview of the most common geometric features in MercuryDPM

2.1 Industrial Mixers
All of the above-mentioned issues occur when studying industrial mixers. One such example
is the Nauta-style mixer shown in figure 1. In MercuryDPM, this mixer is composed of only
four curved surfaces: two conical walls for the casing and the base, and a helical screw with
a cylindrical shaft, which rotate both around their axis and along the casing. The high
curvature of the helical screw as well as the narrow gap between the screw and the outer
casing are hard to resolve using triangulated surfaces. Thus, triangulated geometries need to
be highly refined, with thousands of triangles representing a single surface, which is less
efficient and less accurate than using exact curved surfaces.

Figure 1 Industrial mixers simulated in MercuryDPM with curved geometric features (no triangulation). Left-
to-right: Auger mixer, rotating drum, and Nauta mixer.

2.1 Tunnel Boring Machine
MercuryDPM has many features that allow you to design complex surfaces. Thanks to this
aspect, it is possible to create a Tunnel Boring Machine (TBM). TBMs are used to excavate
tunnels with a circular cross section; they have a rotating cutting wheel, called cutterhead,
used to excavate the soil. When the ground is soft, Earth Pressure Balance Machines (EPB)
are used. They get this name because they use the excavated material to balance the pressure

FAST, FLEXIBLE PARTICLE SIMULATIONS: AN INTRODUCTION TO MERCURYDPM

at the tunnel face and this is obtained using a screw. The screw allows the maintenance of
the prescribed pressure inside the excavation chamber.
EPBs have a complex geometry, but with MercuryDPM it is possible to obtain a simplified
version using a novel hybrid of complex and triangulated walls. A simplified EPB was
obtained using already implemented shapes, like AxisymmetricIntersectionOfWalls,
Screw and TriangleWall. The EPB’s body (Fig. 2a) was created using curved shapes, while
the cutterhead, which has a more complex shape, was read in as a triangulated wall from an
STL file. Using readTriangleWall, it was possible to design a real cutter head (Fig. 2b),
starting from the physical model of EPB used in the Laboratory of Civil Engineering and
Building Sciences of ENTPE in Lyon (France) [10].

Figure 2 (a) EPB and soil simulated with MercuryDPM; (b) Cutterhead created with triangulated walls [10]

With this model is possible to simulate the excavation phase and analyse the behaviour of
the tunnelling ground in site, varying some parameters such as the EPB’s velocity, the
cutterhead’s angular velocity and the screw’s angular velocity. Using MercuryCG, it is also
possible to extract some important continuous property, for example volume fraction,
tangential forces and stresses on the cutterhead.

2.2 Contact Models
Contact models are used to determine the forces acting between two particles in contact.
Many different contact forces have been described in literature, which can roughly be
classed into three categories: elastic, plastic and dissipative forces that act in normal
direction; tangential forces and torques due to sliding, rolling and torsion motion; and
adhesive forces that may act between nearby particles even if they are not in contact. Which
contact model best describes the real contact behaviour depends on the material type and
particle size, and on ambient effects such as temperature and moisture. In most cases, a
combination of these forces needs to be taken into account. For this reason, MercuryDPM
allows you to define contact models by combining a normal-force, tangential-force, and
adhesive force model. Table 1 summarizes the type of contact models available; of course,
the user can also define additional contact models.

FAST, FLEXIBLE PARTICLE SIMULATIONS: AN INTRODUCTION TO MERCURYDPM

Normal forces Tangential forces/torques Adhesive/short-range forces
Linear spring-dashpot [17] Sliding friction [17, 23] Reversible linear adhesion [19]

Hertzian spring-dashpot [23] Rolling friction [17, 23] Irreversible linear adhesion [19]
Linear elasto-plastic cohesive [17] Torsion friction [17, 23] Liquid bridges [19]

Solid-state sintering [18] Migrating liquid bridges [20]
Melting particle model [15] Permanent particle bonds [14]

 Charged particles [14]

Table 2.2: Contact forces implemented in MercuryDPM.

2.3 Common Geometries
For most processes, the user has to define the full setup (walls, particles, contact models)
from scratch. However, certain setups are so common that we have implemented special
classes that predefine parts of the setup: The Chute class, for example, contains a function to
create an inclined plane, which can be rough or smooth, and has predefined periodic
boundaries that allows the user to quickly setup a periodic chute flow simulation. Similarly,
ChuteWithHopper can be used to simulate a chute with an inflow hopper. We recommend
users to define their own classes with predefined setups, e.g. for parameter studies where
simulations only vary slightly, and thus avoid code duplication. An application of the Chute
class is shown in [15].

2.4 Non-spherical Particles
As DPM studies become more complex and detailed, many users wish to use non-spherical
particles in their simulations. MercuryDPM supports several ways to define non-spherical
particle shapes, such as multi-spheres [11], superquadrics [12], agglomeration [15], and
bonding [14]. We now show two applications using non-spherical particles.
2.4a Ellipsoidal Particles
We simulate ellipsoidal particles to study the influence of particle shape on granular flows.
They are a special case of superquadric particles, the shape of which is analytically defined
an parametrised such that the lengths of the three semi-axes and the blockiness of the shape
can be modified. Contact detection and computation of the overlap is implemented similar to
[12]. Since the coarse-graining tool MercuryCG does not rely on particle shape when
regarding the packing fraction, density and momentum of the flow, the continuum fields for
these quantities can be automatically be computed without any changes to the code.
To study the influence of particle shape on segregation, we construct a rotating cylindrical
drum made out of small particles. The drum is filled with mixtures of spheres and prolate
ellipsoids of equal volume and equal density. After ten rotations, the mixture is coarse-
grained over half a rotation period in order to obtain the concentration of spheres throughout
the drum. We confirmed the observation of [13] that for a combination of spheres and
prolate ellipsoids with aspect ratio 2, the ellipsoids segregate to the core, while for a
combination of spheres and prolate ellipsoids with aspect ratio four, the ellipsoids segregate
to the outside of the flow; more detailed observations will be presented in a follow-up
publication. Figure 3 shows the segregation profile for both these cases.

FAST, FLEXIBLE PARTICLE SIMULATIONS: AN INTRODUCTION TO MERCURYDPM

Figure 3: Mixtures of spheres and ellipsoidal particles in a rotating drum, screenshots and coarse-grained solid
volume fraction of spheres. (left) ellipsoids of aspect ratio 2, (right) ellipsoids of aspect ratio 4.

2.4b Multispheres
For some applications, the geometry of the particles is relevant (e.g., railway ballast), and
assuming spheres or ellipsoids may be a very simplistic approximation. For this reason, the
concept of “multispheres” is being implemented in MercuryDPM. A multisphere is a cluster
of spheres (or superquadrics) whose relative positions are fixed and are such that the
boundary of the cluster approximates the intended geometry. In this way, a multisphere is
similar to an agglomerate of elementary particles, but no internal deformation and/or
breakage is allowed. The elementary particles (slaves) composing a multisphere can overlap
and their radius may vary. Due to the possible overlap of slaves composing a multisphere
particle, the inertia of the multisphere cannot be calculated internally by the software;
instead, it must be specified by the user.
Contact forces between slave particles of a multisphere and other bodies (not belonging to
the same multisphere) are calculated the same way as for any other particle, but the resulting
forces and torques are applied to the multisphere’s centre-of-mass. The response of the
multisphere is ultimately determined by solving the equations of motion of a rigid body [11]
for its (linear and angular) accelerations.
Figure 4 depicts the application of multispheres to simulate a compression test of railway
ballast material (in 2D). As can be seen, each particle is composed by small spheres
delimiting the desired geometry.

Figure 4: Multispheres reproducing the shape of ballast particles in a simulated compression test.

FAST, FLEXIBLE PARTICLE SIMULATIONS: AN INTRODUCTION TO MERCURYDPM

2.5 General Interfaces
MercuryDPM uses an object-oriented approach, using classes to define parameters and
functionality, and adding extra functionality by inheritance. For example, all functionality
needed for a discrete particle simulation is contained in the Mercury3D class:
setupInitialConditions() initialises the simulation, solve() calls
setupInitialConditions() and continues the simulation, etc. All the user has to do is
define the initial geometric setup (walls, boundary conditions, particle positions) and the
process parameters (contact law, time step, final time, etc). Thus, a typical user code looks as
follows:

To store elementary objects, such as particles, walls and boundary conditions, MercuryDPM
uses a series of handler classes. The ParticleHandler, for example, can store all types of
particles (spherical, superquadric, etc), the WallHandler all types of walls, etc. This is
shown in the top right of Figure 5.
All objects in a handler share a common base class. This ensures that the syntax for all
objects and handlers is the same. For example, BaseParticle contains the common
properties of all particles, such as position, orientation, and velocity; the same member
function, getObject(int), can used to access an object in the Particle-, Wall-, or
BoundaryHandler; and the same function, getID(), is used to access the unique id of any
particle, wall, or boundary. This is shown in the bottom right of Figure 5.
Using the inheritance structure, the user can easily define new classes of elementary objects:
For example, to define a sinusoidally-shaped wall, the user creates a new class SineWall,
inheriting from BaseWall, and introduces parameters such as amplitude and oscillation
frequency, and defines the member functions, such as the getDistance function.
2.6 Restarting
Each Mercury3D class has a write function, which stores the current state of a simulation in
a text file; and a read function, which reloads the written state of a simulation. This allows
simulations to be restarted. This functionality can the executed via a command-line interface:
for example, by calling the executable HourGlass2DDemo, a simulation of 2 second is
launched. One can now restart this simulation and run it for a further two seconds by
executing the command HourGlass2DDemo -r HourGlass2DDemo.restart -timeMax 4.

#include "Mercury3D.h"

class Demo : public Mercury3D {
 void setupInitialConditions() override {
 //define particles, walls, boundaries, etc.
 }
};

int main() {
 Demo problem;
 //define contact law, time step, etc. here
 problem.solve();
}

FAST, FLEXIBLE PARTICLE SIMULATIONS: AN INTRODUCTION TO MERCURYDPM

Figure 5: Basic class structure of MercuryDPM, showing the inheritance and encapsulation strategy.
Handlers for contact laws, interactions, coarse-graining, and MPI decomposition are not shown,

and only a select number of particle, wall, and boundary types are shown.

2.7 Visualisation
There are two programs to visualise MercuryDPM output: xBalls and Paraview. xBalls,
written by Stefan Luding, is a simple X11-based viewer that allows the user to quickly check
the progress of the simulation. It is automatically installed with MercuryDPM; to visualise a
simulation such as HourGlass2DDemo with xballs, one simply needs to execute a script file
that is part of the default simulation output, in this case HourGlass2DDemo.xballs.

A more detailed three-dimensional visualisation of the walls and particles can be obtained
via Paraview. For more information, see the MercuryDPM documentation at
https://docs.mercurydpm.org.

3 MAJOR COMPONENTS
MercuryDPM has two additional major components that where originally developed by its
team. Firstly, it uses an advanced contact detection method, the hierarchical grid [5];
secondly, it uses coarse-graining [6-9], a novel way to extract continuum fields from discrete
particle systems.

3.1 Contact Detection
Contact detection is one of the most complex parts of any DPM algorithm and can consume
the majority of the computational time, if it is not carefully implemented.
The most basic contact detection simply loops through all particle pairs to determine which
particles are in contact; this algorithm is of quadratic complexity, O(N2), where N is the
number of particles in the simulation. Because the rest of the DPM algorithm is of linear
complexity, O(N), such a contact detection would make large simulations prohibitively
expensive. Thus, more efficient contact detection is needed. Most DPM algorithms use the
linked-list contact detection, illustrated in Figure 6 left: Particles are placed into a grid whose
cell size is the diameter of the largest particle. Particles can thus only be in contact with
particles in the same or in a neighbouring cell. For monodispersed simulations, this

FAST, FLEXIBLE PARTICLE SIMULATIONS: AN INTRODUCTION TO MERCURYDPM

algorithm is of linear complexity, O(N), and thus sufficiently efficient. However, because the
cell size is based on the largest particle diameter, it is of quadratic complexity, O(N2), for
highly polydisperse simulations.
MercuryDPM uses the hierarchical grid (hGrid) [5,24,25], an advanced contact detection
method that uses several grids for different particle sizes, as shown in Figure 6 right. By
carefully selecting the number of levels and cell sizes, linear complexity of the algorithm can
be guaranteed even for the most difficult of particle size distributions. This feature allows for
the first time large simulations with wide size distributions.

Figure 6: (left) A two-level grid for the special case of a bi-disperse system. The first level grid is plotted with

dashed lines while the second level is plotted with solid lines.
(right) VMD visualised simulations of size-based segregation in drum. Colour indicates particle size

3.1a Segregation in Rotating Drums
Segregation of grains by size is a scientifically interesting and industrial relevant problem. In
industrial situations size-distributions often range over orders of magnitude and are highly
polydispersed; whereas academic studies often consider bi-dispersed with a factor 2-10 in
size. One the key reasons for this discrepancy is computational cost. However, as hieratical
grid, at the heart MercuryDPM, is over three order of magnitude faster even for a factor of
100 bi-situations (and even fast for poly) [16] with this code it is possible for the first time to
consider industrially relevant distributions. Figure 6 (right) shows a simulation with a size
ratio of 100 visualised using VMD that was run on a normal desktop computer.
3.2 Coarse Graining
Coarse-graining (CG) is a micro-macro transition method: it extracts continuum fields
(density, momentum, stress, etc.) from discrete particle simulations, allowing the validation
and calibration of macroscopic models [6-9]. Unlike binning methods, which extract average
values in small volumes, coarse graining evaluates continuum fields as a function of time and
space. Thus, unlike binning, the resulting fields are continuous, satisfy mass and momentum
conservation (locally) exactly, and the spatial and temporal averaging scales (w and wt) are
well-defined .

B

A

x (a.u.)

y (a.u.)

243 8

8

3

16

24

16

FAST, FLEXIBLE PARTICLE SIMULATIONS: AN INTRODUCTION TO MERCURYDPM

The approach is flexible and the latest version can model both bulk and mixtures Figure 7:,
boundaries and interfaces, time-dependent, steady and static situations. It is available in
MercuryDPM either as a post-processing tool, or it can be run in real-time, e.g. to define
pressure-controlled walls.
Output data can be coarse-grained via the command line using the fstatistics tool. For
example, the following command will apply CG to the output of the FiveParticles
application:

fstatistics FiveParticles −stattype XZ -n 200 −w 0.1 −tmin 20

Because the simulation is two-dimensional, it resolves spatially in x and z only (−stattype
XZ), on a grid of 200x200 points (−n 200), using a spatial coarse-graining width w=0.1 (−w
0.1). Only the last time step (at t=20) is evaluated (−tmin 20), where the simulation is
steady. The output can be visualised in Matlab using loadstatistics.m:

>> data = loadstatistics(“FiveParticles.stat”);
>> contourf(data.x,data.z,data.Density);

The result is shown in Figure 8 (centre).
MercuryDPM is the only code where coarse-graining can be applied during a simulation.
This allows a two-way coupling between the continuous fields and the particle simulation,
e.g. for solid-particle coupling (force-controlled walls) and particle-fluid coupling
(suspensions); see [15] for details.

Figure 8: Snapshot of the final state of the FiveParticles	simulation (left).

Coarse-graining is applied to obtain the bulk density ρ	(centre)	and pressure p	(right).

4 DOWNLOAD, TESTING, DOCUMENTATION
4.1 Versioning
MercuryDPM is available for download at http://mercurydpm.org. One can download the
either latest release version, or the developer’s version (“Trunk”). The Trunk is updated as
soon as a new feature is complete and is intended for developers only. After six months in
the Trunk (where the developers’ community will be able to debug the feature), a feature is
considered save to use and ready to be merged into the next release.

4.2 Self-test Suite
Developing new features can have unintended consequences. For example, introducing a
new variable in DPMBase could accidentally break the ability to restart simulations. To avoid
breaking existing code by introducing new features, MercuryDPM uses the CTest software:
Before any new code is committed to the Trunk or Release, the developer calls the command
make fullTest, which (a) checks whether all codes in MercuryDPM compile, and (b) runs
a series of self- and unit-tests to validate that no existing feature has been broken. Unit tests
are designed to test a certain feature (e.g. whether the restitution coefficient is computed
correctly) and return true if the test was successful; these are basic simulations that should

0

8

0

3

Figure 7.3: Snapshot of the final state of the FiveParticles simulation (left).
Coarse-graining is applied to obtain the bulk density ⇢ (centre) and pressure p (right).

only consider a 2-dimensional granular medium. To simulate this, Lees-Edwards boundary
conditions are used: two periodic boundaries are defined in x and y-direction, with particles
crossing upward/downward through the y-boundary experiencing a velocity increase/decrease
of �v = �̇W~x. After a while, the flow will reach a steady-state with a uniform shear rate in the
xz-plane, @vx

@y = �̇.

1. Compile and run the driver named LeesEdwards, which is located in the
MercurySimpleDemos directory. Use xballs to view the content of
LeesEdwardsSelfTest.data.
cd $MERCURY_BUILD/ Dr iver s /MercurySimpleDemos
make LeesEdwardsSel fTest
. / LeesEdwardsSel fTest
. / LeesEdwardsSel fTest . x b a l l s

2. First we need to find out when the simulation becomes steady: To do this, plot the kinetic
and potential energy in the whole system over time and check when it becomes steady.
You can find time, translational kinetic and potential energy in columns 1, 3, and 5 of the
file LeesEdwardsSelfTest.ene. Use a program like gnuplot to view the data.
gnuplot
>> p lo t ’ LeesEdwardsSel fTest . ene ’ u 1 :3
>> p lo t ’ LeesEdwardsSel fTest . ene ’ u 1 :5

3. The flow becomes steady very quickly, at about t = 2. To get good statistics, we need to
run for a longer time: Open LeesEdwardsSelfTest.cpp and set the timeMax to 50 to get
more data; then recompile and run the modified code.
Use fstatistics to create continuum fields for the time interval t > 2. Create fields
varying in the x and y direction, with a cg-width of w = d/4 and a mesh size of h = d/4.
Then repeat the process to create fields varying only in the y direction, with a cg-width
of w = d/4 and a mesh size of h = d/10. Thus the full command is:
. . / MercuryCG/ f s t a t i s t i c s LeesEdwardsSel fTest �s t a t type XY
�w 0.25 �h 0 .25 �tmin 2
. . / MercuryCG/ f s t a t i s t i c s LeesEdwardsSel fTest �s t a t type Y
�w 0.25 �h 0 .1 �tmin 2 �o LeesEdwardsSel fTest .Y. s t a t

4. Now view the output in Matlab or octave. Usually, you have to write your own matlab
script to view the output, but here we have provided you with a sample: run the script
LeesEdwardsSelfTest.m to load the content of
LeesEdwardsSelfTest.stat and produce a plot of the velocity.

68

FAST, FLEXIBLE PARTICLE SIMULATIONS: AN INTRODUCTION TO MERCURYDPM

run in less than one second. Self-tests validate more complex features (e.g. restarting), and
checks whether the output files have changed; these are slightly more elaborate simulations
that should run in less than 10 seconds. There are now more than 300 unit- and self-tests in
current developer’s version of MercuryDPM. To ensure that each feature is tested, new tests
have to be committed for each new feature.
4.3 Documentation and Tutorials
The documentation of MercuryDPM is available at docs.mercurydom.org. All classes of
MercuryDPM are documented here, using the Doxygen suite, which extracts documentation
from comments written by the developers in the MercuryDPM source files. In addition, the
website contains tutorials, a list of demo codes, and a basic manual that will help new users
and new developers to get acquainted with MercuryDPM.
5 RELEASE STRATEGY
Originally MercuryDPM is released once a year; however, this is becoming less practical
due to the large number of contributors, so we have moved to an open-development model,
i.e. opening the developer’s version to public download.
For more information about MercuryDPM please visit http://MercuryDPM.org; training and
consultancy are available via our spin-off company MercuryLab (http://MercuryLab.org)

ACKNOWLEGEMENTS
We acknowledge the support of the following grants: NWO VIDI 16604 Virtual Prototyping
of Particulate Processes; NWO VIDI 13472 Shaping segregation; NWO-TTW 15050
Multiscale Modelling of Agglomeration.

REFERENCES
[1] Thornton, A.R., Krijgsman, D., te Voortwis, A., Ogarko, V., Luding, S., Fransen, R.,

Gonzalez, S. I., Bokhove, O., Imole, O., Weinhart, T. (2013). A review of recent work
on the Discrete Particle Method at the University of Twente: An introduction to the
open-source package MercuryDPM, Proc. 6th Int. Conf. Discrete Element Methods.

[2] Thornton, A.R., Krijgsman, D., Fransen, R., Gonzalez, S., Tunuguntla, D. R., ten
Voortwis, A., Luding, S., Bokhove, O., Weinhart, T. (2013). Mercury-DPM: Fast
particle simulations in complex geometries, EnginSoft Year 10(1).

[3] Weinhart, T., Tunuguntla, D. R., van Schrojenstein Lantman, M., van der Horn, A. J.,
Denissen, I. F. C., Windows-Yule, C. R. K., de Jong, A. C., Thornton, A. R. (2016),
MercuryDPM: A fast and flexible particle solver Part A: Technical Advances, Proc. 7th
Int. Conf. Discrete Element Methods.

[4] Weinhart, T., Tunuguntla, D.R., van Schrojenstein Lantman, M.P., Denissen, I.F.C.,
Windows-Yule, C.R., Polman, H., Tsang, J.M.F., Jin, B., Orefice, L., van der Vaart, K.,
Roy, S., Shi, H., Pagano, A., den Breeijen, W., Scheper, B.J., Jarray, A., Luding, S.,
Thornton, A.R. (2017). MercuryDPM: Fast, flexible particle simulations in complex
geometries Part B: Applications, Proc. Int. Conf. Particle-Based Methods.

[5] Krijgsman, D., Ogarko, V. and Luding, S., Optimal parameters for a hierarchical grid
data structure for contact detection in arbitrarily polydisperse particle systems, Comp.
Part. Mech. 1(3), (2014).

[6] Weinhart, T., Thornton, A.R., Luding, S. and Bokhove, O., From discrete particles to
continuum fields near a boundary, Granular Matter 14(2), 289-294 (2012).

FAST, FLEXIBLE PARTICLE SIMULATIONS: AN INTRODUCTION TO MERCURYDPM

[7] Tunuguntla, D. R., Thornton, A. R. and Weinhart, T., From discrete particles to
continuum fields: Extension to bidisperse mixtures. Computational Particle Mechanics
3(3), 349-365 (2016).

[8] Weinhart, T., Hartkamp, R., Thornton, A.R. and Luding, S., Coarse-grained local and
objective continuum description of 3D granular flows down an inclined surface, Phys.
Fluids 25, 070605 (2013).

[9] Weinhart, T., Labra, C., Luding, S. and Ooi, J., Influence of coarse-graining parameters
on the analysis of DEM simulation results, Powder Technology 293, 138-148 (2016).

[10] J. Bel, D. Branque, H. Wong, G. Viggiani, N. Losacco (2016). Impact of tunneling on
pile structures above the tunnel. Université de Lyon, France, and University of Rome
‘Tor Vergata’, Italy.

[11] Hibbeler R.C. (2016). Engineering Mechanics: Dynamics, 12th Edition, Prentice Hall,
New Jersey.

[12] Podlozhnyuk, A., Pirker, S., Kloss, C. (2017). Efficient implementation of superquadric
particles in Discrete Element Method within an open-source framework. Comp. Particle
Mechanics 4.1: 101-118.

[13] He, S. Y., Gan, J. Q., Pinson, D., Zhou, Z. Y. (2019). Particle shape-induced radial
segregation of binary mixtures in a rotating drum. Powder Technology 34: 157-166.

[14] Pagano, A.G., Magnanimo, V., Weinhart, T., Tarantino, A. (2019) Exploring the
micromechanics of non-active clays by way of virtual DEM experiments, Géotechnique
(in print)

[15] Weinhart, T., Post, M., Orefice, L., Rapino, P., Polman, H., Roy, S., Shaheen, M.Y.,
Alvarez Naranjo, J.E., Cheng, H., Jing, L., Shi, H., Thornton, A.R. (2019). Faster, more
flexible particle simulations: The future of MercuryDPM. Proc. 8th International
Conference on Discrete Element Methods (DEM8).

[16] Thornton, A.R., Weinhart, T., Ogarko, V., Luding, S. (2013) Multi-scale modeling of
multi-component granular materials. Computer Methods in Materials Sc. 13 (2), 1-16

[17] Luding, S. (2008) Cohesive, frictional powders: contact models for tension, Granular
matter 10 (4), 235

[18] Fuchs, R., Weinhart, T., Ye, M., Luding, S., Butt, H.-J., Kappl, M. (2017) Initial stage
sintering of polymer particles EPJ Web Conf. 140, Powders and Grains

[19] Roy, S., Singh, A., Luding, S., Weinhart, T. (2016) Micro-Macro Transition and
Simplified Contact Models for Wet Granular Materials Computational Particle
Mechanics 3(4), 449-462

[20] Roy, S., Luding, S., Weinhart, T. (2018) Liquid re-distribution in sheared wet granular
media, Physical Review E, 98, 052906

[21] Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E. (2018) All you need is shape:
Predicting shear banding in sand with LS-DEM, Journal of the Mechanics and Physics
of Solids 111, 375-392

[22] Piegl, L., and Tiller, W. (2012) The NURBS book. Springer Science & Business Media
[23] Tomas, J. (2003) The mechanics of dry, cohesive powders, Powder Handling and

Processing 15(5)
[24] Thornton, A.R., Weinhart, T., Ogarko, V., Luding, S. (2013) Multi-scale modeling of

multi-component granular materials Computer Methods in Materials Science 13(2), 1-16
[25] Ogarko, V., Luding, S. (2012) A fast multilevel algorithm for contact detection of

arbitrarily polydisperse objects, Computer physics communications, Elsevier

