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Abstract. This paper results from an ongoing investigation of the effect of cohesion on the compaction of
sheared wet granular materials. We compare the spatial distribution of the volume fraction of dry non-cohesive
and moderately-to-strongly wet cohesive granular materials. Here we report the effect of cohesion between
the grains on bulk compaction, i.e. the volume fraction, in a three dimensional system. We study this in
an unconfined, slowly sheared split-bottom ring shear cell, where materials while sheared are subjected to
compression under the confining weight of the materials above. Our results show that the inter-particle cohesion
has a considerable impact on the bulk compaction of the materials. For weak cohesion we observe dilation while
strong cohesion leads to granulation already for Bond numbers Bo & 1.0.

1 Introduction

Unsaturated granular media of particles with interstitial
liquid in the form of bridges between particle pairs, dis-
play bulk cohesion, which can be tuned using different liq-
uids with varying surface tension σ. Earlier experimental
studies have been done on the slow shear and compaction
dynamics of wet granular assemblies subjected to tapping
[1]. The influence of the liquid surface tension σ on the
compaction dynamics has shown a decrease of both initial
and final packing fractions as a function of σ [2]. This
behavior is limited to weak and moderately cohesive sys-
tems.

Fournier et al. [3] did not observe a measurable depen-
dence of packing densities on the amount of wetting liquid
added, an obvious reason being that the forces exerted by
the bridges are only very weakly dependent on bridge vol-
ume [4]. At small liquid content and after sufficient equi-
libration, the interior of the wet granulate is expected to
be characterized by a network of liquid bridges connect-
ing adjacent grains. It is clear that the connectivity of this
network of liquid bridges is of importance for the mechan-
ics of the wet granular materials [5–7], be it directly due to
the capillary forces itself or due to the enhancement of the
mutual friction between the grains by the increased inter-
nal pressure. For the wet granular materials, this pressure
increase is of the order ∆p ≈ σ/r given by the Laplace-
Young equation, where r is a typical radius of the grains.
The local volume fraction of the bulk on macro-scale is
connected to the pressure gradient and is thus dependent
on σ/r.
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We study here the packing fraction in the critical state
for non-cohesive to strongly cohesive systems by varying
the surface tension of the liquid. Wet granular are cohesive
and particles can stick together and form local agglomer-
ates or granules, due to formation of clusters of particles
for very cohesive systems, as shown in figure 1 and 4(c).

2 Model System

2.1 Geometry

Split-Bottom Ring Shear Cell: We use MercuryDPM
[8, 9], an open-source implementation of the Discrete Par-
ticle Method, to simulate a shear cell with annular geom-
etry and a split bottom plate, as explained in [10]. Earlier
studies used similar rotating set-ups, including [11–13].
The geometry of the system consists of an outer cylinder
(radius Ro = 110 mm) rotating around a fixed inner cylin-
der (radius Ri = 14.7 mm) with a rotation frequency of
Ω = 2π f and f = 0.01 revolutions per second (see Figure
1). The granular material is confined by gravity between
the two concentric cylinders and the bottom plate, with a
free top surface. The bottom plate is split at radius Rs = 85
mm. Due to the split at the bottom, a narrow shear band
is formed. It moves inwards and widens towards the flow
surface. This set-up thus features a wide shear band away
from the bottom and the wall which is free from bound-
ary effects. The shear cell is filled with particles of mean
diameter dp ≈ 2.2 mm up to filling height of H ≈ 40 mm
under dry conditions. Thus, the shear band remains far
away from the inner wall.

In earlier studies [14–16], a quarter of this system (0◦

≤ φ ≤ 90◦) was simulated using periodic boundary condi-
tions. In order to save computation time, here we simulate



only a smaller section of the system (0◦ ≤ φ ≤ 30◦) with ap-
propriate periodic boundary conditions in the angular co-
ordinate, unless specified otherwise. We have observed
no noticeable effect on the macroscopic behavior in com-
parisons between simulations done with a smaller (30◦) or
larger (90◦) opening angle. Note that for very strong at-
tractive forces, the system becomes inhomogeneous and
looses its radial symmetry: i.e. agglomeration of particles
occurs. Then, particles interact on a larger length scale and
thus the above statement is not true anymore.

Figure 1: a) Front view and b) Top view of highly cohesive
wet granular materials (Bog = 34.6). Different colors blue,
green and red denote the measure of low to high kinetic
energy of the particles.

2.2 Contact model and parameters

We use a linear visco-elastic slightly frictional con-
tact model in combination with Willet’s capillary bridge
model, as explained in [10]. In order to see the effect of
varying cohesive strength on the macroscopic rheology of
wet materials, we vary the intensity of the maximum cap-
illary force fcmax = πdσ cos θ, by varying the surface ten-
sion of the liquid σ, while keeping the volume of liquid
bridges constant, (Vb = 75 nl), corresponding to a liquid
saturation of 8% of the volume of the pores. We compare
here the volume fractions of non-cohesive to moderate to
strongly cohesive granular materials, with surface tension
of liquid ranging from σ = 0 Nm−1,up to σ = 5 Nm−1 for
strongly cohesive systems. The contact angle is fixed at
θ = 10◦.

3 Dimensionless numbers

The effects of varying shear rate, pressure, stiffness and
cohesion can be modelled using three dimensionless num-
bers, expressed as a ratio of time-scales as given in Tab. 1,
where the subscripts γ̇, p, k and c denote strain-rate, pres-
sure, stiffness and cohesion respectively [17].

Table 1: Dimensionless numbers for the model

Dimensionless number Definition Time scale ratio
Inertial number I γ̇dp√

p/ρ
tp/tγ̇

Softness p∗ pdp

k (tk/tp)2

Local Bond number Bo fcmax

pdp
2 (tp/tc)2

In addition, we define the global Bond number as
Bog = fcmax/(pmeandp

2), where pmean is the mean pressure
in the system (at about half filling height H/2).

4 Rheological model

The macroscopic quantities are obtained by spatial coarse
graining with temporal averaging of the system in steady
state as detailed in [10, 17]. We study the effect of the lo-
cal Bond number Bo on the local volume fraction φ in the
critical state. This state is reached only after large enough
shear, when the materials deform with applied strain with-
out detectable changes in the local quantities, independent
of the initial condition. This corresponds to the region of
the shear band center in the system, as explained in detail
in [17].

4.1 Non-cohesive granular materials

For dry granular materials, Bo = 0, the rheology only de-
pends on p∗ and I. The dependence of the macroscopic
friction coefficient µ = τ/p on p∗ and I has been studied in
[15–17]. In order to complete the rheology for soft, com-
pressible particles, a relation for the solid volume fraction
(packing fraction) as function of pressure and shear rate is
missing for dry non-cohesive materials. In [18], the fol-
lowing dependency was observed:

φ(I, p∗) = φo fI(I) fp(p∗) (1)

with the critical or steady state density under shear, in the
limit of vanishing pressure and inertial number, φo = 0.64,
fp(p∗) = (1 + p∗/po

∗), fI(I) = (1 − I/Io). The typical
strain rate for which dilation would turn to fluidization is
Io = 0.85 , and the typical pressure level for which softness
leads to huge densities is po

∗ = 0.33 [18]. Note that both
correction functions are first order, i.e. they are valid only
for sufficiently small arguments. Too large inertial num-
bers would fully fluidize the system so that the rheology
should be that of a granular fluid, for which kinetic theory
applies, while too large pressure would lead to enormous
overlaps, for which the contact model and the particle sim-
ulation become questionable.



4.2 Cohesive granular materials

Additional corrections for cohesive particles involve the
so-called Bond-number Bo which is the subject of our
study. Agreeing with the convention of a generalised rhe-
ology [18], the additional correction fc(Bo) for cohesion is
included:

φ(I, p∗, Bo) = φo fI(I) fp(p∗) fc(Bo) (2)

Table 2: Coefficients for the model

Dimensionless number Corrections Coefficients

Volume fraction (φo) φo = 0.65

Inertial number (I) fI =

(
1 − I

Io

)
Io = 0.85

Softness (p∗) fp =

(
1 +

p∗

po
∗

)
po
∗ = 0.27

Cohesion (Bo) fc = exp
(
−

min(Bo,1)
Boc1

)
×(

1 +
max(Bo−1,0)

Boc2

) Boc1 ≈ 215, Boc2 ≈ 93 (2D
plot) and Boc1 ≈ 218, Boc2 ≈

85 (3D plot)

5 Results: packing fraction and local
clustering

We analyse the local packing fraction φ as a function of
the local Bond number Bo. All the data shown in figure 2
corresponds to the critical state, though a shear band is not
clearly defined in strongly cohesive systems (Bog > 3.46).
The packing fraction decreases (weakly) with Bo up to a
local critical Bond number Boc = 1.0, then increases lin-
early with further increase in Bond number Bo (Bo > Boc)
as shown in figure 2. This indicates that local compaction
of granular materials occurs when the maximum attractive
capillary force exceeds the repulsive force due to the local
confining pressure p i.e. pdp

2 < fcmax, resulting in some
material densification. This result is conceptually in the
same spirit as the results of [15]. Singh et al. [15] shows
the effect of dry cohesion (local Bond number) on width
and position of the shear band and states that both are in-
dependent of cohesion for Bo < 1.0. However, the band
becomes wider and moves inwards for Bo > 1.0. Here, we
see a similar effect for wet cohesion on the local packing
fraction of the materials. The local density of materials in-
creases by 25% from non-cohesive (Bog = 0) to strongly
cohesive granular materials (Bog = 34.6). Further, the
effects of other dimensionless numbers I and p∗ are also
present for wet cohesive granular materials as they exist
for dry granular materials. These effects are combined as
individual corrections and they collectively contribute to
the local bulk density of the material.

The correction fc is given by the solid line in figure 2,
which is a representation of φ/( fI fp) as a function of the
local Bond number Bo. We observe different phenomeno-
logical changes in the local density for small and large co-
hesion, and thus fc(Bo) is fitted separately by :

fc(Bo) =

 fc1 = exp(−Bo/Boc1) for Bo ≤ 1.0,
fc2 = 1 + (Bo − 1)/Boc2 for Bo > 1.0

(3)

Bo ≤ 1.0 and Bo > 1.0, respectively (see Tab. 2),
where fc1 is valid for range of Bond number Bo ≤ 1.0, fc2
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Figure 2: Scaled local packing fraction φ/( fI fp) as a func-
tion of the local Bond number Bo. The solid lines are given
by Eq. (3), with parameters given in Tab. 2.

is valid for Bond number Bo > 1.0. As the data accuracy
does not allow a good fit of fc1, we propose to improve the
function fc1 with better data quality in future.

To validate the effect of each dimensionless num-
ber, contributing in the multiplicative correction forms, as
shown in Eq. (2), we represent in a surface plot φ/ fI as a
function of Bo and p∗, as shown in figure 3. As the flow
is quasistatic, the inertial number effect is very weak. The
data are fitted by two surfaces, differentiated by Bo ≤ 1
and Bo > 1 respectively, given by equations fp fc1 and
fp fc2 respectively with the coefficients given in Tab. 2.
The two surfaces are obtained by fitting data for Bo ≤ 1.0
and Bo > 1.0 respectively, eliminating the inhomogeneous
data for strong cohesion Bog = 34.6 in order to get good
agreement. The fitting constants for the surface plots are
given in Tab. 2. The local volume fraction for dry non-
cohesive is approximately equal to φo and is also in agree-
ment with the trend (not shown in the figure).
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Figure 3: Surface plot of φ/ fI as a function of p∗ and Bo
with Bo ≤ 1.0 (blue _) and Bo > 1.0 (red •).



Figure 4 (a), (b) and (c) shows the contour plot of the
spatial distribution of local packing fraction with the mag-
nitude given by the color map for different Bond numbers
Bog = 0, 1.94 and 34.6 respectively. Focusing on the cen-
ter of the shear band, the mean volume fraction is close to
0.65 for non-cohesive materials as shown in figure 4(a). In
comparison, the local volume fraction of the strongly co-
hesive materials inside the center of the shear band is 0.85
in figure 4(c). The vertical center of mass of the materials
decreases by 1% from the non-cohesive (a) to the moder-
ate cohesion (b) and by 25% for strong cohesion (c).
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Figure 4: Contour plot of volume fraction for (a) Bog =

0.0, (b) Bog = 1.94 and (c) Bog = 34.6 in the r − z plane.
Both (a) and (b) are homogeneous in cylindrical direction,
while (c) displays granule formation as shown in figure 1.

6 Conclusion

We studied the local packing fraction of dry and wet gran-
ular materials as a function different dimensionless num-
bers, namely, the inertial number I, the softness p∗ and the
Bond number Bo. Focus is on the effect of cohesion (quan-
tified by the Bond number). Earlier studies have shown
that the packing fraction of dry granular materials is to the
first order linearly dependent on I and p∗. We observe
the same scalings for wet materials. Further, the pack-
ing fraction is slightly decreasing for small Bond numbers
(Bo ≤ 1.0) and linearly increasing for overall high Bond
numbers (Bo > 1.0). The rheology is defined by a gen-
eralised model which constitutes the correction terms in
multiplicative form. Our results show that for strongly
cohesive systems, materials are densely compacted and
the filling height of the bed drops by approximately 25%,

which corresponds to an increase in volume fraction by
20% in the range from non-cohesive to strongly cohesive
granular materials. The generalised model is validated
by our data where the parameters are in close agreement
with that of earlier validated coefficients for non-cohesive
granular materials. To have a complete understanding of
the rheology, focus on a generalised rheology for the co-
ordination number would be interesting.
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